Cargando…
Three myths about risk thresholds for prediction models
BACKGROUND: Clinical prediction models are useful in estimating a patient’s risk of having a certain disease or experiencing an event in the future based on their current characteristics. Defining an appropriate risk threshold to recommend intervention is a key challenge in bringing a risk predictio...
Autores principales: | Wynants, Laure, van Smeden, Maarten, McLernon, David J., Timmerman, Dirk, Steyerberg, Ewout W., Van Calster, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814132/ https://www.ncbi.nlm.nih.gov/pubmed/31651317 http://dx.doi.org/10.1186/s12916-019-1425-3 |
Ejemplares similares
-
Calibration: the Achilles heel of predictive analytics
por: Van Calster, Ben, et al.
Publicado: (2019) -
There is no such thing as a validated prediction model
por: Van Calster, Ben, et al.
Publicado: (2023) -
Predictive analytics in health care: how can we know it works?
por: Van Calster, Ben, et al.
Publicado: (2019) -
Adaptive sample size determination for the development of clinical prediction models
por: Christodoulou, Evangelia, et al.
Publicado: (2021) -
Developing risk models for multicenter data using standard logistic regression produced suboptimal predictions: A simulation study
por: Falconieri, Nora, et al.
Publicado: (2020)