Cargando…
Do older English adults exhibit day-to-day compensation in sedentary time and in prolonged sedentary bouts? An EPIC-Norfolk cohort analysis
INTRODUCTION: Compensatory behaviours may be one of the reasons for the limited success of sedentary time interventions in older adults, but this possibility remains unexplored. Activity compensation is the idea that if we change activity levels at one time we compensate for them at a later time to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814223/ https://www.ncbi.nlm.nih.gov/pubmed/31652285 http://dx.doi.org/10.1371/journal.pone.0224225 |
Sumario: | INTRODUCTION: Compensatory behaviours may be one of the reasons for the limited success of sedentary time interventions in older adults, but this possibility remains unexplored. Activity compensation is the idea that if we change activity levels at one time we compensate for them at a later time to maintain a set point. We aimed to assess, among adults aged ≥60 years, whether sedentary time and time spent in prolonged sedentary bouts (≥30 mins) on one day were associated with sedentary time and time spent in prolonged sedentary bouts (≥30 mins) on the following day. We also sought to determine whether these associations varied by sociodemographic and comorbid factors. METHODS: Sedentary time was assessed for seven days using hip-worn accelerometers (ActiGraph GT1M) for 3459 adults who participated in the EPIC-Norfolk Study between 2004 and 2011. We assessed day-to-day associations in total and prolonged bouts of sedentary time using multi-level regressions. We included interaction terms to determine whether associations varied by age, sex, smoking, body mass index, social class, retirement, education and comorbid factors (stroke, diabetes, myocardial infarction and cancer). RESULTS: Participants (mean age = 70.3, SD = 6.8 years) accumulated 540 sedentary mins/day (SD = 80.1). On any given day, every 60 minutes spent in sedentary time was associated with 9.9 extra sedentary minutes on the following day (95% CI 9.0, 10.2). This association was greater in non-retired compared to retired participants (non-retired 2.57 extra minutes, p = 0.024) and in current compared to former and never-smokers (5.26 extra mins for current vs former; 5.52 extra mins for current vs never, p = 0.023 and 0.017, respectively). On any given day, every 60 minutes spent in prolonged bouts was associated with 7.8 extra minutes in these bouts the following day (95% CI 7.6, 8.4). This association was greater in older individuals (0.18 extra minutes/year of age, 95% CI 0.061, 0.29), and for retired versus non-retired (retired 2.74 extra minutes, 95% CI 0.21, 5.74). CONCLUSION: Older adults did not display day-to-day compensation. Instead, individuals demonstrate a large stable component of day-to-day time spent sedentary and in prolonged bouts with a small but important capacity for positive variation. Therefore older adults appear to be largely habitual in their sedentary behaviour. Strategies to augment these patterns may be possible, given they may differ by age, smoking, and working status. |
---|