Cargando…

The role of item size on choosing contrasted food quantities in angelfish (Pterophyllum scalare)

Comparative studies on quantity discrimination in animals are important for understanding potential evolutionary roots of numerical competence. A previous study with angelfish has shown that they discriminate numerically different sets of same-sized food items and prefer the larger set. However, var...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Laplaza, Luis M., Romero, Laura, Gerlai, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814702/
https://www.ncbi.nlm.nih.gov/pubmed/31653899
http://dx.doi.org/10.1038/s41598-019-51753-1
Descripción
Sumario:Comparative studies on quantity discrimination in animals are important for understanding potential evolutionary roots of numerical competence. A previous study with angelfish has shown that they discriminate numerically different sets of same-sized food items and prefer the larger set. However, variables that covary with number were not controlled and choice could have been influenced by variables such as size or density of the food items rather than numerical attributes. Here using a recently developed approach, we examined whether contour length of the food items affects choice in a spontaneous binary choice task. In Experiment 1, a contrast of 1 vs. 1 food item was presented, but the ratio between the size (diameter) of the food items was varied. In Experiment 2, numerically different food sets were equated in overall size by increasing the size (diameter) of the items in the numerically small sets. In both Experiments, subjects showed a preference for the larger sized food items with a discrimination limit. These results show that item size plays a prominent role in foraging decisions in angelfish. Experiment 3 placed numerical and size attributes of the sets in conflict by presenting one larger-sized food item in the numerically smaller set that also had smaller overall size (diameter) of food items. Angelfish showed no preference in any of the contrasts, suggesting that they could not make optimal foraging decisions when these attributes were in conflict. Maximization of energy return is central to optimal foraging. Accordingly, here item size was also found to be a key feature of the sets, although the numerical attributes of the sets also influenced the choice.