Cargando…
Global humid tropics forest structural condition and forest structural integrity maps
Remotely sensed maps of global forest extent are widely used for conservation assessment and planning. Yet, there is increasing recognition that these efforts must now include elements of forest quality for biodiversity and ecosystem services. Such data are not yet available globally. Here we introd...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814722/ https://www.ncbi.nlm.nih.gov/pubmed/31653863 http://dx.doi.org/10.1038/s41597-019-0214-3 |
Sumario: | Remotely sensed maps of global forest extent are widely used for conservation assessment and planning. Yet, there is increasing recognition that these efforts must now include elements of forest quality for biodiversity and ecosystem services. Such data are not yet available globally. Here we introduce two data products, the Forest Structural Condition Index (SCI) and the Forest Structural Integrity Index (FSII), to meet this need for the humid tropics. The SCI integrates canopy height, tree cover, and time since disturbance to distinguish short, open-canopy, or recently deforested stands from tall, closed-canopy, older stands typical of primary forest. The SCI was validated against estimates of foliage height diversity derived from airborne lidar. The FSII overlays a global index of human pressure on SCI to identify structurally complex forests with low human pressure, likely the most valuable for maintaining biodiversity and ecosystem services. These products represent an important step in maturation from conservation focus on forest extent to forest stands that should be considered “best of the last” in international policy settings. |
---|