Cargando…

DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering

Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Milanese, Chiara, Bombardieri, Cíntia R., Sepe, Sara, Barnhoorn, Sander, Payán-Goméz, César, Caruso, Donatella, Audano, Matteo, Pedretti, Silvia, Vermeij, Wilbert P., Brandt, Renata M. C., Gyenis, Akos, Wamelink, Mirjam M., de Wit, Annelieke S., Janssens, Roel C., Leen, René, van Kuilenburg, André B. P., Mitro, Nico, Hoeijmakers, Jan H. J., Mastroberardino, Pier G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814737/
https://www.ncbi.nlm.nih.gov/pubmed/31653834
http://dx.doi.org/10.1038/s41467-019-12640-5
_version_ 1783463044086497280
author Milanese, Chiara
Bombardieri, Cíntia R.
Sepe, Sara
Barnhoorn, Sander
Payán-Goméz, César
Caruso, Donatella
Audano, Matteo
Pedretti, Silvia
Vermeij, Wilbert P.
Brandt, Renata M. C.
Gyenis, Akos
Wamelink, Mirjam M.
de Wit, Annelieke S.
Janssens, Roel C.
Leen, René
van Kuilenburg, André B. P.
Mitro, Nico
Hoeijmakers, Jan H. J.
Mastroberardino, Pier G.
author_facet Milanese, Chiara
Bombardieri, Cíntia R.
Sepe, Sara
Barnhoorn, Sander
Payán-Goméz, César
Caruso, Donatella
Audano, Matteo
Pedretti, Silvia
Vermeij, Wilbert P.
Brandt, Renata M. C.
Gyenis, Akos
Wamelink, Mirjam M.
de Wit, Annelieke S.
Janssens, Roel C.
Leen, René
van Kuilenburg, André B. P.
Mitro, Nico
Hoeijmakers, Jan H. J.
Mastroberardino, Pier G.
author_sort Milanese, Chiara
collection PubMed
description Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.
format Online
Article
Text
id pubmed-6814737
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68147372019-10-28 DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering Milanese, Chiara Bombardieri, Cíntia R. Sepe, Sara Barnhoorn, Sander Payán-Goméz, César Caruso, Donatella Audano, Matteo Pedretti, Silvia Vermeij, Wilbert P. Brandt, Renata M. C. Gyenis, Akos Wamelink, Mirjam M. de Wit, Annelieke S. Janssens, Roel C. Leen, René van Kuilenburg, André B. P. Mitro, Nico Hoeijmakers, Jan H. J. Mastroberardino, Pier G. Nat Commun Article Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. Nature Publishing Group UK 2019-10-25 /pmc/articles/PMC6814737/ /pubmed/31653834 http://dx.doi.org/10.1038/s41467-019-12640-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Milanese, Chiara
Bombardieri, Cíntia R.
Sepe, Sara
Barnhoorn, Sander
Payán-Goméz, César
Caruso, Donatella
Audano, Matteo
Pedretti, Silvia
Vermeij, Wilbert P.
Brandt, Renata M. C.
Gyenis, Akos
Wamelink, Mirjam M.
de Wit, Annelieke S.
Janssens, Roel C.
Leen, René
van Kuilenburg, André B. P.
Mitro, Nico
Hoeijmakers, Jan H. J.
Mastroberardino, Pier G.
DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
title DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
title_full DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
title_fullStr DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
title_full_unstemmed DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
title_short DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
title_sort dna damage and transcription stress cause atp-mediated redesign of metabolism and potentiation of anti-oxidant buffering
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814737/
https://www.ncbi.nlm.nih.gov/pubmed/31653834
http://dx.doi.org/10.1038/s41467-019-12640-5
work_keys_str_mv AT milanesechiara dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT bombardiericintiar dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT sepesara dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT barnhoornsander dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT payangomezcesar dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT carusodonatella dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT audanomatteo dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT pedrettisilvia dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT vermeijwilbertp dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT brandtrenatamc dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT gyenisakos dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT wamelinkmirjamm dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT dewitanneliekes dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT janssensroelc dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT leenrene dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT vankuilenburgandrebp dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT mitronico dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT hoeijmakersjanhj dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering
AT mastroberardinopierg dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering