Cargando…
DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering
Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defecti...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814737/ https://www.ncbi.nlm.nih.gov/pubmed/31653834 http://dx.doi.org/10.1038/s41467-019-12640-5 |
_version_ | 1783463044086497280 |
---|---|
author | Milanese, Chiara Bombardieri, Cíntia R. Sepe, Sara Barnhoorn, Sander Payán-Goméz, César Caruso, Donatella Audano, Matteo Pedretti, Silvia Vermeij, Wilbert P. Brandt, Renata M. C. Gyenis, Akos Wamelink, Mirjam M. de Wit, Annelieke S. Janssens, Roel C. Leen, René van Kuilenburg, André B. P. Mitro, Nico Hoeijmakers, Jan H. J. Mastroberardino, Pier G. |
author_facet | Milanese, Chiara Bombardieri, Cíntia R. Sepe, Sara Barnhoorn, Sander Payán-Goméz, César Caruso, Donatella Audano, Matteo Pedretti, Silvia Vermeij, Wilbert P. Brandt, Renata M. C. Gyenis, Akos Wamelink, Mirjam M. de Wit, Annelieke S. Janssens, Roel C. Leen, René van Kuilenburg, André B. P. Mitro, Nico Hoeijmakers, Jan H. J. Mastroberardino, Pier G. |
author_sort | Milanese, Chiara |
collection | PubMed |
description | Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. |
format | Online Article Text |
id | pubmed-6814737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68147372019-10-28 DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering Milanese, Chiara Bombardieri, Cíntia R. Sepe, Sara Barnhoorn, Sander Payán-Goméz, César Caruso, Donatella Audano, Matteo Pedretti, Silvia Vermeij, Wilbert P. Brandt, Renata M. C. Gyenis, Akos Wamelink, Mirjam M. de Wit, Annelieke S. Janssens, Roel C. Leen, René van Kuilenburg, André B. P. Mitro, Nico Hoeijmakers, Jan H. J. Mastroberardino, Pier G. Nat Commun Article Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. Nature Publishing Group UK 2019-10-25 /pmc/articles/PMC6814737/ /pubmed/31653834 http://dx.doi.org/10.1038/s41467-019-12640-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Milanese, Chiara Bombardieri, Cíntia R. Sepe, Sara Barnhoorn, Sander Payán-Goméz, César Caruso, Donatella Audano, Matteo Pedretti, Silvia Vermeij, Wilbert P. Brandt, Renata M. C. Gyenis, Akos Wamelink, Mirjam M. de Wit, Annelieke S. Janssens, Roel C. Leen, René van Kuilenburg, André B. P. Mitro, Nico Hoeijmakers, Jan H. J. Mastroberardino, Pier G. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
title | DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
title_full | DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
title_fullStr | DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
title_full_unstemmed | DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
title_short | DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
title_sort | dna damage and transcription stress cause atp-mediated redesign of metabolism and potentiation of anti-oxidant buffering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814737/ https://www.ncbi.nlm.nih.gov/pubmed/31653834 http://dx.doi.org/10.1038/s41467-019-12640-5 |
work_keys_str_mv | AT milanesechiara dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT bombardiericintiar dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT sepesara dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT barnhoornsander dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT payangomezcesar dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT carusodonatella dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT audanomatteo dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT pedrettisilvia dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT vermeijwilbertp dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT brandtrenatamc dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT gyenisakos dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT wamelinkmirjamm dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT dewitanneliekes dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT janssensroelc dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT leenrene dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT vankuilenburgandrebp dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT mitronico dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT hoeijmakersjanhj dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering AT mastroberardinopierg dnadamageandtranscriptionstresscauseatpmediatedredesignofmetabolismandpotentiationofantioxidantbuffering |