Cargando…
Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features
Landslide disasters cause huge casualties and economic losses every year, how to accurately forecast the landslides has always been an important issue in geo-environment research. In this paper, a hybrid machine learning approach RSLMT is firstly proposed by coupling Random Subspace (RS) and Logisti...
Autores principales: | Luo, Xiangang, Lin, Feikai, Chen, Yihong, Zhu, Shuang, Xu, Zhanya, Huo, Zhibin, Yu, Mengliang, Peng, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814778/ https://www.ncbi.nlm.nih.gov/pubmed/31653958 http://dx.doi.org/10.1038/s41598-019-51941-z |
Ejemplares similares
-
Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors
por: Luo, Xiangang, et al.
Publicado: (2019) -
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping
por: Feizizadeh, Bakhtiar, et al.
Publicado: (2014) -
Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling
por: Zhang, Tingyu, et al.
Publicado: (2018) -
Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model
por: Zhang, Tingyu, et al.
Publicado: (2019)