Cargando…
A vertical silicon-graphene-germanium transistor
Graphene-base transistors have been proposed for high-frequency applications because of the negligible base transit time induced by the atomic thickness of graphene. However, generally used tunnel emitters suffer from high emitter potential-barrier-height which limits the transistor performance towa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814790/ https://www.ncbi.nlm.nih.gov/pubmed/31653842 http://dx.doi.org/10.1038/s41467-019-12814-1 |
Sumario: | Graphene-base transistors have been proposed for high-frequency applications because of the negligible base transit time induced by the atomic thickness of graphene. However, generally used tunnel emitters suffer from high emitter potential-barrier-height which limits the transistor performance towards terahertz operation. To overcome this issue, a graphene-base heterojunction transistor has been proposed theoretically where the graphene base is sandwiched by silicon layers. Here we demonstrate a vertical silicon-graphene-germanium transistor where a Schottky emitter constructed by single-crystal silicon and single-layer graphene is achieved. Such Schottky emitter shows a current of 692 A cm(−2) and a capacitance of 41 nF cm(−2), and thus the alpha cut-off frequency of the transistor is expected to increase from about 1 MHz by using the previous tunnel emitters to above 1 GHz by using the current Schottky emitter. With further engineering, the semiconductor-graphene-semiconductor transistor is expected to be one of the most promising devices for ultra-high frequency operation. |
---|