Cargando…

A vertical silicon-graphene-germanium transistor

Graphene-base transistors have been proposed for high-frequency applications because of the negligible base transit time induced by the atomic thickness of graphene. However, generally used tunnel emitters suffer from high emitter potential-barrier-height which limits the transistor performance towa...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chi, Ma, Wei, Chen, Maolin, Ren, Wencai, Sun, Dongming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814790/
https://www.ncbi.nlm.nih.gov/pubmed/31653842
http://dx.doi.org/10.1038/s41467-019-12814-1
Descripción
Sumario:Graphene-base transistors have been proposed for high-frequency applications because of the negligible base transit time induced by the atomic thickness of graphene. However, generally used tunnel emitters suffer from high emitter potential-barrier-height which limits the transistor performance towards terahertz operation. To overcome this issue, a graphene-base heterojunction transistor has been proposed theoretically where the graphene base is sandwiched by silicon layers. Here we demonstrate a vertical silicon-graphene-germanium transistor where a Schottky emitter constructed by single-crystal silicon and single-layer graphene is achieved. Such Schottky emitter shows a current of 692 A cm(−2) and a capacitance of 41 nF cm(−2), and thus the alpha cut-off frequency of the transistor is expected to increase from about 1 MHz by using the previous tunnel emitters to above 1 GHz by using the current Schottky emitter. With further engineering, the semiconductor-graphene-semiconductor transistor is expected to be one of the most promising devices for ultra-high frequency operation.