Cargando…
Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: implications for early atmospheres and Life
The molecular form of nitrogen, N(2), is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic eff...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814809/ https://www.ncbi.nlm.nih.gov/pubmed/31653928 http://dx.doi.org/10.1038/s41598-019-51784-8 |
Sumario: | The molecular form of nitrogen, N(2), is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic effects of minerals such as pyrite on nitrogen fixation have to date been overlooked. Here we show experimentally, using X-ray photoemission and infrared spectroscopies that, under a standard earth atmosphere containing nitrogen and water vapour at Earth or Martian pressures, nitrogen is fixed to pyrite as ammonium iron sulfate after merely two hours of exposure to 2,3 W/m 2 of ultraviolet irradiance in the 200–400 nm range. Our experiments show that this process exists also in the absence of UV, although about 50 times slower. The experiments also show that carbonates species are fixed on pyrite surface. |
---|