Cargando…
Predicting metabolite-disease associations based on KATZ model
BACKGROUND: Increasing numbers of evidences have illuminated that metabolites can respond to pathological changes. However, identifying the diseases-related metabolites is a magnificent challenge in the field of biology and medicine. Traditional medical equipment not only has the limitation of its a...
Autores principales: | Lei, Xiujuan, Zhang, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815005/ https://www.ncbi.nlm.nih.gov/pubmed/31673292 http://dx.doi.org/10.1186/s13040-019-0206-z |
Ejemplares similares
-
Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks
por: Fan, Chunyan, et al.
Publicado: (2018) -
Predicting Metabolite–Disease Associations Based on LightGBM Model
por: Zhang, Cheng, et al.
Publicado: (2021) -
KATZLDA: KATZ measure for the lncRNA-disease association prediction
por: Chen, Xing
Publicado: (2015) -
Predicting Metabolite-Disease Associations Based on Spy Strategy and ABC Algorithm
por: Lei, Xiujuan, et al.
Publicado: (2020) -
A Novel Approach Based on Bipartite Network Recommendation and KATZ Model to Predict Potential Micro-Disease Associations
por: Li, Shiru, et al.
Publicado: (2019)