Cargando…
lionessR: single sample network inference in R
BACKGROUND: In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those in...
Autores principales: | Kuijjer, Marieke L, Hsieh, Ping-Han, Quackenbush, John, Glass, Kimberly |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815019/ https://www.ncbi.nlm.nih.gov/pubmed/31653243 http://dx.doi.org/10.1186/s12885-019-6235-7 |
Ejemplares similares
-
The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
por: Ben Guebila, Marouen, et al.
Publicado: (2023) -
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
por: Paulson, Joseph N., et al.
Publicado: (2017) -
Estimating Sample-Specific Regulatory Networks
por: Kuijjer, Marieke Lydia, et al.
Publicado: (2019) -
Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn'
por: Bender, Christian, et al.
Publicado: (2011) -
PyPanda: a Python package for gene regulatory network reconstruction
por: van IJzendoorn, David G.P., et al.
Publicado: (2016)