Cargando…

Polymorphism of DNA Repair Genes via Homologous Recombination (HR) in Ovarian Cancer

Ovarian cancer is one of the most common types of cancer in women. The repair system via homologous recombination repairs double-strand breaks (DSB) of DNA, which are the most mortal for cell, out of all DNA damages. The genes, which encode the double-strand break repairing proteins, are highly poly...

Descripción completa

Detalles Bibliográficos
Autores principales: Smolarz, Beata, Michalska, Magdalena M., Samulak, Dariusz, Romanowicz, Hanna, Wójcik, Luiza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815278/
https://www.ncbi.nlm.nih.gov/pubmed/30712190
http://dx.doi.org/10.1007/s12253-019-00604-5
Descripción
Sumario:Ovarian cancer is one of the most common types of cancer in women. The repair system via homologous recombination repairs double-strand breaks (DSB) of DNA, which are the most mortal for cell, out of all DNA damages. The genes, which encode the double-strand break repairing proteins, are highly polymorphic and, taking into account the significance of the repaired defects for cancer development, it seems important to learn the role of the polymorphisms in ovarian cancer development. The aim of the study was to determine the relationship between DNA repair genes via homologous recombination (HR) and modulation of the risk of ovarian cancer. The following polymorphisms were analysed: XRCC3-Thr241Met (rs861539), XRCC2--41657C/T (rs718282), XRCC2-Arg188His (rs3218536), BRCA1-Q356R (rs1799950) and RAD51–135 G/C (rs1801320). The study group included 600 patients with ovarian cancer and 600 healthy controls. The PCR-RFLP (PCR-based restriction fragment length polymorphism) technique was applied for polymorphism analysis. Allele XRCC3-241Met (OR 0.85, 95%CI 0.72–0.99, p < 0.045), XRCC2-41657 T (OR 1.67, 95% CI 1.42–1.96, p < .0001), BRCA1-356R (OR 1.61; % CI 1.37–1.90, p < .0001) and RAD51–135C (OR 5.16; 95% CI 4.29–6.20, p < .0001) strongly correlated with the neoplastic disease. No relationship was observed between the studied polymorphisms and the cancer progression stage according to FIGO classification. The results indicate that polymorphisms of DNA repair genes via homologous recombination may be associated with the incidence of ovarian cancer. Further research on larger groups is warranted to determine the influence of above-mentioned genetic variants on ovarian cancer risk.