Cargando…
Fully automated convolutional neural network-based affine algorithm improves liver registration and lesion co-localization on hepatobiliary phase T1-weighted MR images
BACKGROUND: Liver alignment between series/exams is challenged by dynamic morphology or variability in patient positioning or motion. Image registration can improve image interpretation and lesion co-localization. We assessed the performance of a convolutional neural network algorithm to register cr...
Autores principales: | Hasenstab, Kyle A., Cunha, Guilherme Moura, Higaki, Atsushi, Ichikawa, Shintaro, Wang, Kang, Delgado, Timo, Brunsing, Ryan L., Schlein, Alexandra, Bittencourt, Leornado Kayat, Schwartzman, Armin, Fowler, Katie J., Hsiao, Albert, Sirlin, Claude B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815316/ https://www.ncbi.nlm.nih.gov/pubmed/31655943 http://dx.doi.org/10.1186/s41747-019-0120-7 |
Ejemplares similares
-
Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment
por: Lin, Wenyi, et al.
Publicado: (2020) -
Bayesian Fully Convolutional Networks for Brain Image Registration
por: Cui, Kunpeng, et al.
Publicado: (2021) -
Alternative approach of hepatocellular carcinoma surveillance: abbreviated MRI
por: Brunsing, Ryan L., et al.
Publicado: (2020) -
Fully Affine Invariant Methods for Cross-Session Registration of Calcium Imaging Data
por: Li, Chunyue, et al.
Publicado: (2020) -
MDReg‐Net: Multi‐resolution diffeomorphic image registration using fully convolutional networks with deep self‐supervision
por: Li, Hongming, et al.
Publicado: (2022)