Cargando…

Luteolin supports osteogenic differentiation of human periodontal ligament cells

BACKGROUND: Previous research revealed that luteolin could improve the activation of alkaline phosphatase (ALP) and osteocalcin in mouse osteoblasts. We aimed to determine the effect of luteolin on osteogenic differentiation of periodontal ligament cells (PDLCs). METHODS: Cultured human PDLCs (HPDLC...

Descripción completa

Detalles Bibliográficos
Autores principales: Quan, He, Dai, Xiaopeng, Liu, Meiyan, Wu, Chuanjun, Wang, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815369/
https://www.ncbi.nlm.nih.gov/pubmed/31655580
http://dx.doi.org/10.1186/s12903-019-0926-y
Descripción
Sumario:BACKGROUND: Previous research revealed that luteolin could improve the activation of alkaline phosphatase (ALP) and osteocalcin in mouse osteoblasts. We aimed to determine the effect of luteolin on osteogenic differentiation of periodontal ligament cells (PDLCs). METHODS: Cultured human PDLCs (HPDLCs) were treated by luteolin at 0.01, 0.1, 1, 10, 100 μmol/L, Wnt/β-catenin pathway inhibitor (XAV939, 5 μmol/L) alone or in combination with 1 μmol/L luteolin. Immunohistochemical staining was performed to ensure cells source. Cell activity and the ability of osteogenic differentiation in HPDLCs were determined by MTT, ALP and Alizarin Red S staining. Real-time Quantitative PCR Detecting System (qPCR) and Western blot were performed to measure the expressions of osteogenic differentiation-related genes such as bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), Osterix (OSX) and Wnt/β-catenin pathway proteins members cyclin D1 and β-catenin. RESULTS: Luteolin at concentrations of 0.01, 0.1, 1, 10, 100 μmol/L promoted cell viability, ALP activity and increased calcified nodules content in HPDLCs. The expressions of BMP2, OCN, OSX, RUNX2, β-catenin and cyclin D1 were increased by luteolin at concentrations of 0.01, 0.1, 1 μmol/L, noticeably, 1 μmol/L luteolin produced the strongest effects. In addition, XAV939 inhibited the expressions of calcification and osteogenic differentiation-related genes in HPDLCs, and 1 μmol/L luteolin availably decreased the inhibitory effect. CONCLUSION: 1 μmol/L luteolin accelerated osteogenic differentiation of HPDLCs via activating the Wnt/β-catenin pathway, which could be clinically applied to treat periodontal disease.