Cargando…
Comprehensive ensemble in QSAR prediction for drug discovery
BACKGROUND: Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based mac...
Autores principales: | Kwon, Sunyoung, Bae, Ho, Jo, Jeonghee, Yoon, Sungroh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815455/ https://www.ncbi.nlm.nih.gov/pubmed/31655545 http://dx.doi.org/10.1186/s12859-019-3135-4 |
Ejemplares similares
-
Polyphony: superposition independent methods for ensemble-based drug discovery
por: Pitt, William R, et al.
Publicado: (2014) -
Methodology of aiQSAR: a group-specific approach to QSAR modelling
por: Vukovic, Kristijan, et al.
Publicado: (2019) -
QSAR DataBank - an approach for the digital organization and archiving of QSAR model information
por: Ruusmann, Villu, et al.
Publicado: (2014) -
Flexible Dual-Branched Message-Passing Neural Network
for a Molecular Property Prediction
por: Jo, Jeonghee, et al.
Publicado: (2022) -
Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process
por: Sushko, Yurii, et al.
Publicado: (2014)