Cargando…
Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria
Nosocomial infections caused by bacteria are one of the main public health problems. Moreover, the resistance to antibiotics by these bacteria makes it necessary to find new treatments to fight them. Objective. To evaluate the antibacterial activity of Luma apiculata (DC.) Burret extracts on bacteri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815527/ https://www.ncbi.nlm.nih.gov/pubmed/31737073 http://dx.doi.org/10.1155/2019/7803726 |
_version_ | 1783463201559543808 |
---|---|
author | Araya-Contreras, Tiare Veas, Rhonda Escobar, Carlos A. Machuca, Pamela Bittner, Mauricio |
author_facet | Araya-Contreras, Tiare Veas, Rhonda Escobar, Carlos A. Machuca, Pamela Bittner, Mauricio |
author_sort | Araya-Contreras, Tiare |
collection | PubMed |
description | Nosocomial infections caused by bacteria are one of the main public health problems. Moreover, the resistance to antibiotics by these bacteria makes it necessary to find new treatments to fight them. Objective. To evaluate the antibacterial activity of Luma apiculata (DC.) Burret extracts on bacteria of clinical importance. Materials and Methods. In this study, extracts were obtained at room temperature by successive extraction of L. apiculata leaves, flowers, and branches and treated separately with solvents of ascending polarity (i.e., hexane, methylene dichloride, ethyl acetate, ethanol, methanol, and water) to extract the compounds depending on their polarity. Then, the extract's antibacterial activity was tested against Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus sp, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli. Results. The hexane extract of L. apiculata leaves resulted to be active against all bacteria tested. Among them, S. aureus showed to be the more susceptible, showing a minimum inhibitory concentration (MIC) of 120 μg/ml. In addition, a growth curve was performed, and colonies were counted. A decrease in bacterial growth was observed when the hexane extract of L. apiculata leaves was added. Besides, the hexane extracts of L. apiculata flowers resulted to be active against all Gram-positive tested bacteria. However, at higher concentrations, this extract resulted inactive for the Gram-negative bacteria tested. The hexane extract of L. apiculata branches resulted to be inactive in all cases. The extracts obtained treating separately leaves, flowers, or branches with solvents of major polarity than the hexane in a successive extraction of ascending polarity methodology resulted also to be inactive as an antimicrobial against all bacteria tested. Discussion/Conclusion. The hexane extract of L. apiculata leaves showed the lower MIC against S. aureus when compared with extracts obtained from other parts of the plant. The growth curve and the colonies count suggest a bacteriostatic activity of the L. apiculata leaves extract against Staphylococcus aureus. |
format | Online Article Text |
id | pubmed-6815527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-68155272019-11-17 Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria Araya-Contreras, Tiare Veas, Rhonda Escobar, Carlos A. Machuca, Pamela Bittner, Mauricio Int J Microbiol Research Article Nosocomial infections caused by bacteria are one of the main public health problems. Moreover, the resistance to antibiotics by these bacteria makes it necessary to find new treatments to fight them. Objective. To evaluate the antibacterial activity of Luma apiculata (DC.) Burret extracts on bacteria of clinical importance. Materials and Methods. In this study, extracts were obtained at room temperature by successive extraction of L. apiculata leaves, flowers, and branches and treated separately with solvents of ascending polarity (i.e., hexane, methylene dichloride, ethyl acetate, ethanol, methanol, and water) to extract the compounds depending on their polarity. Then, the extract's antibacterial activity was tested against Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus sp, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli. Results. The hexane extract of L. apiculata leaves resulted to be active against all bacteria tested. Among them, S. aureus showed to be the more susceptible, showing a minimum inhibitory concentration (MIC) of 120 μg/ml. In addition, a growth curve was performed, and colonies were counted. A decrease in bacterial growth was observed when the hexane extract of L. apiculata leaves was added. Besides, the hexane extracts of L. apiculata flowers resulted to be active against all Gram-positive tested bacteria. However, at higher concentrations, this extract resulted inactive for the Gram-negative bacteria tested. The hexane extract of L. apiculata branches resulted to be inactive in all cases. The extracts obtained treating separately leaves, flowers, or branches with solvents of major polarity than the hexane in a successive extraction of ascending polarity methodology resulted also to be inactive as an antimicrobial against all bacteria tested. Discussion/Conclusion. The hexane extract of L. apiculata leaves showed the lower MIC against S. aureus when compared with extracts obtained from other parts of the plant. The growth curve and the colonies count suggest a bacteriostatic activity of the L. apiculata leaves extract against Staphylococcus aureus. Hindawi 2019-10-13 /pmc/articles/PMC6815527/ /pubmed/31737073 http://dx.doi.org/10.1155/2019/7803726 Text en Copyright © 2019 Tiare Araya-Contreras et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Araya-Contreras, Tiare Veas, Rhonda Escobar, Carlos A. Machuca, Pamela Bittner, Mauricio Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria |
title | Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria |
title_full | Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria |
title_fullStr | Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria |
title_full_unstemmed | Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria |
title_short | Antibacterial Effect of Luma apiculata (DC.) Burret Extracts in Clinically Important Bacteria |
title_sort | antibacterial effect of luma apiculata (dc.) burret extracts in clinically important bacteria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815527/ https://www.ncbi.nlm.nih.gov/pubmed/31737073 http://dx.doi.org/10.1155/2019/7803726 |
work_keys_str_mv | AT arayacontrerastiare antibacterialeffectoflumaapiculatadcburretextractsinclinicallyimportantbacteria AT veasrhonda antibacterialeffectoflumaapiculatadcburretextractsinclinicallyimportantbacteria AT escobarcarlosa antibacterialeffectoflumaapiculatadcburretextractsinclinicallyimportantbacteria AT machucapamela antibacterialeffectoflumaapiculatadcburretextractsinclinicallyimportantbacteria AT bittnermauricio antibacterialeffectoflumaapiculatadcburretextractsinclinicallyimportantbacteria |