Cargando…
Preliminary Study on the Efficient Electrohysterogram Segments for Recognizing Uterine Contractions with Convolutional Neural Networks
BACKGROUND: Uterine contraction (UC) is the tightening and shortening of the uterine muscles which can indicate the progress of pregnancy towards delivery. Electrohysterogram (EHG), which reflects uterine electrical activities, has recently been studied for UC monitoring. In this paper, we aimed to...
Autores principales: | Peng, Jin, Hao, Dongmei, Liu, Haipeng, Liu, Juntao, Zhou, Xiya, Zheng, Dingchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815646/ https://www.ncbi.nlm.nih.gov/pubmed/31737659 http://dx.doi.org/10.1155/2019/3168541 |
Ejemplares similares
-
Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram
por: Hao, Dongmei, et al.
Publicado: (2019) -
Automatic recognition of uterine contractions with electrohysterogram signals based on the zero-crossing rate
por: Song, Xiaoxiao, et al.
Publicado: (2021) -
Development of Electrohysterogram Recording System for Monitoring Uterine Contraction
por: Hao, Dongmei, et al.
Publicado: (2019) -
Recognition of uterine contractions with electrohysterogram and exploring the best electrode combination
por: Du, Mengqing, et al.
Publicado: (2022) -
Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: a preliminary study using random Forest
por: Peng, Jin, et al.
Publicado: (2020)