Cargando…

Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model

Diabetic cardiomyopathy is characterized by diabetes‐induced myocardial abnormalities, accompanied by inflammatory response and alterations in inflammation‐related signalling pathways. Kirenol, isolated from Herba Siegesbeckiae, has potent anti‐inflammatory properties. In this study, we aimed to inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Bin, Huang, Xue‐Yuan, Li, Le, Fan, Xiao‐Hang, Li, Peng‐Cheng, Huang, Chuan‐Qi, Xiao, Juan, Gui, Rong, Wang, Shun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815847/
https://www.ncbi.nlm.nih.gov/pubmed/31565849
http://dx.doi.org/10.1111/jcmm.14638
_version_ 1783463266929868800
author Wu, Bin
Huang, Xue‐Yuan
Li, Le
Fan, Xiao‐Hang
Li, Peng‐Cheng
Huang, Chuan‐Qi
Xiao, Juan
Gui, Rong
Wang, Shun
author_facet Wu, Bin
Huang, Xue‐Yuan
Li, Le
Fan, Xiao‐Hang
Li, Peng‐Cheng
Huang, Chuan‐Qi
Xiao, Juan
Gui, Rong
Wang, Shun
author_sort Wu, Bin
collection PubMed
description Diabetic cardiomyopathy is characterized by diabetes‐induced myocardial abnormalities, accompanied by inflammatory response and alterations in inflammation‐related signalling pathways. Kirenol, isolated from Herba Siegesbeckiae, has potent anti‐inflammatory properties. In this study, we aimed to investigate the cardioprotective effect of kirenol against DCM and underlying the potential mechanisms in a type 2 diabetes mellitus model. Kirenol treatment significantly decreased high glucose‐induced cardiofibroblasts proliferation and increased the cardiomyocytes viability, prevented the loss of mitochondrial membrane potential and further attenuated cardiomyocytes apoptosis, accompanied by a reduction in apoptosis‐related protein expression. Kirenol gavage could affect the expression of pro‐inflammatory cytokines in a dose‐dependent manner but not lower lipid profiles, and only decrease fasting plasma glucose, fasting plasma insulin and mean HbA1c levels in high‐dose kirenol‐treated group at some time‐points. Left ventricular dysfunction, hypertrophy, fibrosis and cell apoptosis, as structural and functional abnormalities, were ameliorated by kirenol administration. Moreover, in diabetic hearts, oral kirenol significantly attenuated activation of mitogen‐activated protein kinase subfamily and nuclear translocation of NF‐κB and Smad2/3 and decreased phosphorylation of IκBα and both fibrosis‐related and apoptosis‐related proteins. In an Electrophoretic mobility shift assay, the binding activities of NF‐κB, Smad3/4, SP1 and AP‐1 in the nucleus of diabetic myocardium were significantly down‐regulated by kirenol treatment. Additionally, high dose significantly enhanced myocardial Akt phosphorylation without intraperitoneal injection of insulin. Kirenol may have potent cardioprotective effects on treating for the established diabetic cardiomyopathy, which involves the inhibition of inflammation and fibrosis‐related signalling pathways and is independent of lowering hyperglycaemia, hyperinsulinemia and lipid profiles.
format Online
Article
Text
id pubmed-6815847
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-68158472019-11-01 Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model Wu, Bin Huang, Xue‐Yuan Li, Le Fan, Xiao‐Hang Li, Peng‐Cheng Huang, Chuan‐Qi Xiao, Juan Gui, Rong Wang, Shun J Cell Mol Med Original Articles Diabetic cardiomyopathy is characterized by diabetes‐induced myocardial abnormalities, accompanied by inflammatory response and alterations in inflammation‐related signalling pathways. Kirenol, isolated from Herba Siegesbeckiae, has potent anti‐inflammatory properties. In this study, we aimed to investigate the cardioprotective effect of kirenol against DCM and underlying the potential mechanisms in a type 2 diabetes mellitus model. Kirenol treatment significantly decreased high glucose‐induced cardiofibroblasts proliferation and increased the cardiomyocytes viability, prevented the loss of mitochondrial membrane potential and further attenuated cardiomyocytes apoptosis, accompanied by a reduction in apoptosis‐related protein expression. Kirenol gavage could affect the expression of pro‐inflammatory cytokines in a dose‐dependent manner but not lower lipid profiles, and only decrease fasting plasma glucose, fasting plasma insulin and mean HbA1c levels in high‐dose kirenol‐treated group at some time‐points. Left ventricular dysfunction, hypertrophy, fibrosis and cell apoptosis, as structural and functional abnormalities, were ameliorated by kirenol administration. Moreover, in diabetic hearts, oral kirenol significantly attenuated activation of mitogen‐activated protein kinase subfamily and nuclear translocation of NF‐κB and Smad2/3 and decreased phosphorylation of IκBα and both fibrosis‐related and apoptosis‐related proteins. In an Electrophoretic mobility shift assay, the binding activities of NF‐κB, Smad3/4, SP1 and AP‐1 in the nucleus of diabetic myocardium were significantly down‐regulated by kirenol treatment. Additionally, high dose significantly enhanced myocardial Akt phosphorylation without intraperitoneal injection of insulin. Kirenol may have potent cardioprotective effects on treating for the established diabetic cardiomyopathy, which involves the inhibition of inflammation and fibrosis‐related signalling pathways and is independent of lowering hyperglycaemia, hyperinsulinemia and lipid profiles. John Wiley and Sons Inc. 2019-09-29 2019-11 /pmc/articles/PMC6815847/ /pubmed/31565849 http://dx.doi.org/10.1111/jcmm.14638 Text en © 2019 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Wu, Bin
Huang, Xue‐Yuan
Li, Le
Fan, Xiao‐Hang
Li, Peng‐Cheng
Huang, Chuan‐Qi
Xiao, Juan
Gui, Rong
Wang, Shun
Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
title Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
title_full Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
title_fullStr Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
title_full_unstemmed Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
title_short Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
title_sort attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815847/
https://www.ncbi.nlm.nih.gov/pubmed/31565849
http://dx.doi.org/10.1111/jcmm.14638
work_keys_str_mv AT wubin attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT huangxueyuan attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT lile attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT fanxiaohang attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT lipengcheng attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT huangchuanqi attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT xiaojuan attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT guirong attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel
AT wangshun attenuationofdiabeticcardiomyopathybyrelyingonkirenoltosuppressinflammationinadiabeticratmodel