Cargando…
Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae
Combination of insect pathogenic fungi and microbial metabolites is a prospective method for mosquito control. The effect of the entomopathogenic fungus Metarhizium robertsii J.F. Bischoff, S.A. Rehner & Humber and avermectins on the survival and physiological parameters of Aedes aegypti (Linnae...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816395/ https://www.ncbi.nlm.nih.gov/pubmed/31667017 http://dx.doi.org/10.7717/peerj.7931 |
_version_ | 1783463363259400192 |
---|---|
author | Noskov, Yuriy A. Polenogova, Olga V. Yaroslavtseva, Olga N. Belevich, Olga E. Yurchenko, Yuriy A. Chertkova, Ekaterina A. Kryukova, Natalya A. Kryukov, Vadim Yu Glupov, Viktor V. |
author_facet | Noskov, Yuriy A. Polenogova, Olga V. Yaroslavtseva, Olga N. Belevich, Olga E. Yurchenko, Yuriy A. Chertkova, Ekaterina A. Kryukova, Natalya A. Kryukov, Vadim Yu Glupov, Viktor V. |
author_sort | Noskov, Yuriy A. |
collection | PubMed |
description | Combination of insect pathogenic fungi and microbial metabolites is a prospective method for mosquito control. The effect of the entomopathogenic fungus Metarhizium robertsii J.F. Bischoff, S.A. Rehner & Humber and avermectins on the survival and physiological parameters of Aedes aegypti (Linnaeus, 1762) larvae (dopamine concentration, glutathione S-transferase (GST), nonspecific esterases (EST), acid proteases, lysozyme-like, phenoloxidase (PO) activities) was studied. It is shown that the combination of these agents leads to a synergistic effect on mosquito mortality. Colonization of Ae. aegypti larvae by hyphal bodies following water inoculation with conidia is shown for the first time. The larvae affected by fungi are characterized by a decrease in PO and dopamine levels. In the initial stages of toxicosis and/or fungal infection (12 h posttreatment), increases in the activity of insect detoxifying enzymes (GST and EST) and acid proteases are observed after monotreatments, and these increases are suppressed after combined treatment with the fungus and avermectins. Lysozyme-like activity is also most strongly suppressed under combined treatment with the fungus and avermectins in the early stages posttreatment (12 h). Forty-eight hours posttreatment, we observe increases in GST, EST, acid proteases, and lysozyme-like activities under the influence of the fungus and/or avermectins. The larvae affected by avermectins accumulate lower levels of conidia than avermectin-free larvae. On the other hand, a burst of bacterial CFUs is observed under treatment with both the fungus and avermectins. We suggest that disturbance of the responses of the immune and detoxifying systems under the combined treatment and the development of opportunistic bacteria may be among the causes of the synergistic effect. |
format | Online Article Text |
id | pubmed-6816395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68163952019-10-30 Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae Noskov, Yuriy A. Polenogova, Olga V. Yaroslavtseva, Olga N. Belevich, Olga E. Yurchenko, Yuriy A. Chertkova, Ekaterina A. Kryukova, Natalya A. Kryukov, Vadim Yu Glupov, Viktor V. PeerJ Ecology Combination of insect pathogenic fungi and microbial metabolites is a prospective method for mosquito control. The effect of the entomopathogenic fungus Metarhizium robertsii J.F. Bischoff, S.A. Rehner & Humber and avermectins on the survival and physiological parameters of Aedes aegypti (Linnaeus, 1762) larvae (dopamine concentration, glutathione S-transferase (GST), nonspecific esterases (EST), acid proteases, lysozyme-like, phenoloxidase (PO) activities) was studied. It is shown that the combination of these agents leads to a synergistic effect on mosquito mortality. Colonization of Ae. aegypti larvae by hyphal bodies following water inoculation with conidia is shown for the first time. The larvae affected by fungi are characterized by a decrease in PO and dopamine levels. In the initial stages of toxicosis and/or fungal infection (12 h posttreatment), increases in the activity of insect detoxifying enzymes (GST and EST) and acid proteases are observed after monotreatments, and these increases are suppressed after combined treatment with the fungus and avermectins. Lysozyme-like activity is also most strongly suppressed under combined treatment with the fungus and avermectins in the early stages posttreatment (12 h). Forty-eight hours posttreatment, we observe increases in GST, EST, acid proteases, and lysozyme-like activities under the influence of the fungus and/or avermectins. The larvae affected by avermectins accumulate lower levels of conidia than avermectin-free larvae. On the other hand, a burst of bacterial CFUs is observed under treatment with both the fungus and avermectins. We suggest that disturbance of the responses of the immune and detoxifying systems under the combined treatment and the development of opportunistic bacteria may be among the causes of the synergistic effect. PeerJ Inc. 2019-10-25 /pmc/articles/PMC6816395/ /pubmed/31667017 http://dx.doi.org/10.7717/peerj.7931 Text en ©2019 Noskov et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Ecology Noskov, Yuriy A. Polenogova, Olga V. Yaroslavtseva, Olga N. Belevich, Olga E. Yurchenko, Yuriy A. Chertkova, Ekaterina A. Kryukova, Natalya A. Kryukov, Vadim Yu Glupov, Viktor V. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae |
title | Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae |
title_full | Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae |
title_fullStr | Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae |
title_full_unstemmed | Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae |
title_short | Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae |
title_sort | combined effect of the entomopathogenic fungus metarhizium robertsii and avermectins on the survival and immune response of aedes aegypti larvae |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816395/ https://www.ncbi.nlm.nih.gov/pubmed/31667017 http://dx.doi.org/10.7717/peerj.7931 |
work_keys_str_mv | AT noskovyuriya combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT polenogovaolgav combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT yaroslavtsevaolgan combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT belevicholgae combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT yurchenkoyuriya combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT chertkovaekaterinaa combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT kryukovanatalyaa combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT kryukovvadimyu combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae AT glupovviktorv combinedeffectoftheentomopathogenicfungusmetarhiziumrobertsiiandavermectinsonthesurvivalandimmuneresponseofaedesaegyptilarvae |