Cargando…

Matrix feedback enables diverse higher-order patterning of the extracellular matrix

The higher-order patterning of extra-cellular matrix in normal and pathological tissues has profound consequences on tissue function. Whilst studies have documented both how fibroblasts create and maintain individual matrix fibers and how cell migration is altered by the fibers they interact with, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wershof, Esther, Park, Danielle, Jenkins, Robert P., Barry, David J., Sahai, Erik, Bates, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816557/
https://www.ncbi.nlm.nih.gov/pubmed/31658254
http://dx.doi.org/10.1371/journal.pcbi.1007251
Descripción
Sumario:The higher-order patterning of extra-cellular matrix in normal and pathological tissues has profound consequences on tissue function. Whilst studies have documented both how fibroblasts create and maintain individual matrix fibers and how cell migration is altered by the fibers they interact with, a model unifying these two aspects of tissue organization is lacking. Here we use computational modelling to understand the effect of this interconnectivity between fibroblasts and matrix at the mesoscale level. We created a unique adaptation to the Vicsek flocking model to include feedback from a second layer representing the matrix, and use experimentation to parameterize our model and validate model-driven hypotheses. Our two-layer model demonstrates that feedback between fibroblasts and matrix increases matrix diversity creating higher-order patterns. The model can quantitatively recapitulate matrix patterns of tissues in vivo. Cells follow matrix fibers irrespective of when the matrix fibers were deposited, resulting in feedback with the matrix acting as temporal ‘memory’ to collective behaviour, which creates diversity in topology. We also establish conditions under which matrix can be remodelled from one pattern to another. Our model elucidates how simple rules defining fibroblast-matrix interactions are sufficient to generate complex tissue patterns.