Cargando…
MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria
To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817358/ https://www.ncbi.nlm.nih.gov/pubmed/31358981 http://dx.doi.org/10.1038/s41564-019-0512-8 |
_version_ | 1783463412418740224 |
---|---|
author | Toro-Nahuelpan, Mauricio Giacomelli, Giacomo Raschdorf, Oliver Borg, Sarah Plitzko, Jürgen M. Bramkamp, Marc Schüler, Dirk Müller, Frank-Dietrich |
author_facet | Toro-Nahuelpan, Mauricio Giacomelli, Giacomo Raschdorf, Oliver Borg, Sarah Plitzko, Jürgen M. Bramkamp, Marc Schüler, Dirk Müller, Frank-Dietrich |
author_sort | Toro-Nahuelpan, Mauricio |
collection | PubMed |
description | To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the adaptor protein MamJ, thereby assembling a magnetic dipole much like a compass needle. However, in Magnetospirillum gryphiswaldense, discontinuous chains are still formed in the absence of MamK. Moreover, these fragmented chains persist in a straight conformation indicating undiscovered structural determinants able to accommodate a bar magnet-like magnetoreceptor in a helical bacterium. Here, we identify MamY, a membrane-bound protein that generates a sophisticated mechanical scaffold for magnetosomes. MamY localizes linearly along the positive inner cell curvature (the geodetic cell axis) likely by self-interaction and curvature sensing. In a mamY deletion mutant, magnetosome chains detach from the geodetic axis and fail to accommodate a straight conformation coinciding with reduced cellular magnetic orientation. Co-deletion of mamKY completely abolishes chain formation, whereas upon synthetic tethering of magnetosomes to MamY, the chain configuration is regained, emphasizing the structural properties of the protein. Our results suggest MamY as membrane-anchored mechanical scaffold essential to align the motility axis of magnetotactic spirilla with their magnetic moment vector and to perfectly reconcile magnetoreception with swimming direction. |
format | Online Article Text |
id | pubmed-6817358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68173582020-01-29 MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria Toro-Nahuelpan, Mauricio Giacomelli, Giacomo Raschdorf, Oliver Borg, Sarah Plitzko, Jürgen M. Bramkamp, Marc Schüler, Dirk Müller, Frank-Dietrich Nat Microbiol Article To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the adaptor protein MamJ, thereby assembling a magnetic dipole much like a compass needle. However, in Magnetospirillum gryphiswaldense, discontinuous chains are still formed in the absence of MamK. Moreover, these fragmented chains persist in a straight conformation indicating undiscovered structural determinants able to accommodate a bar magnet-like magnetoreceptor in a helical bacterium. Here, we identify MamY, a membrane-bound protein that generates a sophisticated mechanical scaffold for magnetosomes. MamY localizes linearly along the positive inner cell curvature (the geodetic cell axis) likely by self-interaction and curvature sensing. In a mamY deletion mutant, magnetosome chains detach from the geodetic axis and fail to accommodate a straight conformation coinciding with reduced cellular magnetic orientation. Co-deletion of mamKY completely abolishes chain formation, whereas upon synthetic tethering of magnetosomes to MamY, the chain configuration is regained, emphasizing the structural properties of the protein. Our results suggest MamY as membrane-anchored mechanical scaffold essential to align the motility axis of magnetotactic spirilla with their magnetic moment vector and to perfectly reconcile magnetoreception with swimming direction. 2019-07-29 2019-11 /pmc/articles/PMC6817358/ /pubmed/31358981 http://dx.doi.org/10.1038/s41564-019-0512-8 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Toro-Nahuelpan, Mauricio Giacomelli, Giacomo Raschdorf, Oliver Borg, Sarah Plitzko, Jürgen M. Bramkamp, Marc Schüler, Dirk Müller, Frank-Dietrich MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
title | MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
title_full | MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
title_fullStr | MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
title_full_unstemmed | MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
title_short | MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
title_sort | mamy is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817358/ https://www.ncbi.nlm.nih.gov/pubmed/31358981 http://dx.doi.org/10.1038/s41564-019-0512-8 |
work_keys_str_mv | AT toronahuelpanmauricio mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT giacomelligiacomo mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT raschdorfoliver mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT borgsarah mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT plitzkojurgenm mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT bramkampmarc mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT schulerdirk mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria AT mullerfrankdietrich mamyisamembraneboundproteinthatalignsmagnetosomesandthemotilityaxisofhelicalmagnetotacticbacteria |