Cargando…
Dataset supporting the proteomic characterization of human corneal epithelial cells with HSV-1 infection
HSV-1 infection in cornea can cause corneal ulcer, scar formation and neovascularization, and finally lead to severe visual impairment. The corneal epithelium is the first barrier against HSV-1 infection, but the host-virus interaction in human corneal epithelial cells (HCECs) in the process is stil...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817629/ https://www.ncbi.nlm.nih.gov/pubmed/31673582 http://dx.doi.org/10.1016/j.dib.2019.104579 |
Sumario: | HSV-1 infection in cornea can cause corneal ulcer, scar formation and neovascularization, and finally lead to severe visual impairment. The corneal epithelium is the first barrier against HSV-1 infection, but the host-virus interaction in human corneal epithelial cells (HCECs) in the process is still not well understood. We applied iTRAQ based proteomic approach to investigate the dynamic change of the protein expression profile in HCECs with a view to gain insight into the host response to HSV-1 infection. Bioinformatic analysis of these dysregulated proteins help us to find the potential gene function and signaling pathway with which these dysregulated proteins are associated. In this work, we present the supporting information for the proteomic characterization for better share and reuse. The main methodological approaches and major findings of the proteomic experiments are described in [1]. |
---|