Cargando…
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks
MicroRNAs (miRNAs) play crucial roles in biological processes involved in diseases. The associations between diseases and protein-coding genes (PCGs) have been well investigated, and miRNAs interact with PCGs to trigger them to be functional. We present a computational method, DimiG, to infer miRNA-...
Autores principales: | Pan, Xiaoyong, Shen, Hong-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817654/ https://www.ncbi.nlm.nih.gov/pubmed/31605942 http://dx.doi.org/10.1016/j.isci.2019.09.013 |
Ejemplares similares
-
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
por: Wang, Juexin, et al.
Publicado: (2020) -
Semi-supervised learning for potential human microRNA-disease associations inference
por: Chen, Xing, et al.
Publicado: (2014) -
Semi-supervised multi-label classification using an extended graph-based manifold regularization
por: Li, Ding, et al.
Publicado: (2022) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants
por: Li, Hailong, et al.
Publicado: (2023)