Cargando…

CIDEA Transcriptionally Regulates UCP1 for Britening and Thermogenesis in Human Fat Cells

Our study identifies a transcriptional role of cell death-inducing DNA fragmentation factor-like effector A (CIDEA), a lipid-droplet-associated protein, whereby it regulates human adipocyte britening/beiging with consequences for the regulation of energy expenditure. The comprehensive transcriptome...

Descripción completa

Detalles Bibliográficos
Autores principales: Jash, Sukanta, Banerjee, Sayani, Lee, Mi-Jeong, Farmer, Stephen R., Puri, Vishwajeet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817690/
https://www.ncbi.nlm.nih.gov/pubmed/31563853
http://dx.doi.org/10.1016/j.isci.2019.09.011
Descripción
Sumario:Our study identifies a transcriptional role of cell death-inducing DNA fragmentation factor-like effector A (CIDEA), a lipid-droplet-associated protein, whereby it regulates human adipocyte britening/beiging with consequences for the regulation of energy expenditure. The comprehensive transcriptome analysis revealed CIDEA's control over thermogenic function in brite/beige human adipocytes. In the absence of CIDEA, achieved by the modified dual-RNA-based CRISPR-Cas9n(D10A) system, adipocytes lost their britening capability, which was recovered upon CIDEA re-expression. Uncoupling protein 1 (UCP1), the most upregulated gene in brite human adipocytes, was suppressed in CIDEA knockout (KO) primary human adipocytes. Mechanistically, during induced britening, CIDEA shuttled from lipid droplets to the nucleus via an unusual nuclear bipartite signal in a concentration-dependent manner. In the nucleus, it specifically inhibited LXRα repression of UCP1 enhancer activity and strengthened PPARγ binding to UCP1 enhancer, hence driving UCP1 transcription. Overall, our study defines the role of CIDEA in increasing thermogenesis in human adipocytes.