Cargando…

Arctic seabirds and shrinking sea ice: egg analyses reveal the importance of ice-derived resources

In the Arctic, sea-ice plays a central role in the functioning of marine food webs and its rapid shrinking has large effects on the biota. It is thus crucial to assess the importance of sea-ice and ice-derived resources to Arctic marine species. Here, we used a multi-biomarker approach combining Hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Cusset, Fanny, Fort, Jérôme, Mallory, Mark, Braune, Birgit, Massicotte, Philippe, Massé, Guillaume
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817817/
https://www.ncbi.nlm.nih.gov/pubmed/31659198
http://dx.doi.org/10.1038/s41598-019-51788-4
Descripción
Sumario:In the Arctic, sea-ice plays a central role in the functioning of marine food webs and its rapid shrinking has large effects on the biota. It is thus crucial to assess the importance of sea-ice and ice-derived resources to Arctic marine species. Here, we used a multi-biomarker approach combining Highly Branched Isoprenoids (HBIs) with δ(13)C and δ(15)N to evaluate how much Arctic seabirds rely on sea-ice derived resources during the pre-laying period, and if changes in sea-ice extent and duration affect their investment in reproduction. Eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) were collected in the Canadian Arctic during four years of highly contrasting ice conditions, and analysed for HBIs, isotopic (carbon and nitrogen) and energetic composition. Murres heavily relied on ice-associated prey, and sea-ice was beneficial for this species which produced larger and more energy-dense eggs during icier years. In contrast, fulmars did not exhibit any clear association with sympagic communities and were not impacted by changes in sea ice. Murres, like other species more constrained in their response to sea-ice variations, therefore appear more sensitive to changes and may become the losers of future climate shifts in the Arctic, unlike more resilient species such as fulmars.