Cargando…

The effects of temporal pressure on obstacle negotiation and gaze behaviour in young adults with simulated vision loss

Individuals with vision loss adapt their locomotion and gaze behaviour to safely negotiate objects in temporally unconstrained situations. However, everyday activities are often performed under time-pressure. We investigated the effects of blur on anxiety, movement kinematics and gaze behaviour duri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zult, Tjerk, Allsop, Jonathan, Timmis, Matthew A., Pardhan, Shahina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817899/
https://www.ncbi.nlm.nih.gov/pubmed/31659214
http://dx.doi.org/10.1038/s41598-019-51926-y
Descripción
Sumario:Individuals with vision loss adapt their locomotion and gaze behaviour to safely negotiate objects in temporally unconstrained situations. However, everyday activities are often performed under time-pressure. We investigated the effects of blur on anxiety, movement kinematics and gaze behaviour during the negotiation of a floor-based obstacle under three amounts of pressure: 1) no-pressure; 2) tonal-pressure: an intermittent tone was played at a constant frequency; 3) tonal + time pressure: the intermittent tone increased in frequency and participants had to walk 20% faster to reach the end of the lab. Irrespective of the amount of pressure, the blurred vs. normal vision group reported 32% more anxiety, lifted the lead foot 43% higher and 10% slower over the obstacle, and looked 6% longer and 6% more frequently ahead of the obstacle. In the tonal + time pressure vs. no-pressure condition, both groups were more anxious, showed adaptations in movement kinematics related to walking faster, and adopted a ‘checking strategy’ by shortening their fixation durations at the obstacle. These results show that irrespective of temporal pressure, the blurred vision group remained more cautious as to how the lead foot negotiated the obstacle, in order to reduce the chance of tripping during crossing.