Cargando…

Bias Toward Drug-Related Stimuli Is Affected by Loading Working Memory in Abstinent Ex-Methamphetamine Users

Background: There is a trade-off between drug-related impulsive process and cognitive reflective process among ex-drug abusers. The present study aimed to investigate the impulsive effects of methamphetamine-related stimuli on working memory (WM) performance by manipulating WM load in abstinent ex-m...

Descripción completa

Detalles Bibliográficos
Autores principales: Deldar, Zoha, Ekhtiari, Hamed, Pouretemad, Hamid Reza, Khatibi, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817911/
https://www.ncbi.nlm.nih.gov/pubmed/31695630
http://dx.doi.org/10.3389/fpsyt.2019.00776
Descripción
Sumario:Background: There is a trade-off between drug-related impulsive process and cognitive reflective process among ex-drug abusers. The present study aimed to investigate the impulsive effects of methamphetamine-related stimuli on working memory (WM) performance by manipulating WM load in abstinent ex-methamphetamine users. Methods: Thirty abstinent ex-methamphetamine users and 30 nonaddict matched control participants were recruited in this study. We used a modified Sternberg task in which participants were instructed to memorize three different sets of methamphetamine-related and non–drug-related words (three, five, or seven words) while performing a secondary attention-demanding task as an interference. Results: Repeated-measures ANOVA revealed that reaction times of abstinent ex-methamphetamine users increased during low WM load (three words) compared to the control group (p = 0.01). No significant differences were observed during high WM loads (five or seven words) (both p’s > 0.1). Besides, reaction times of the experimental group during trials with high interference (three, five, or seven words) were not significantly different compared to the control group (p > 0.2). Conclusion: These findings imply that increasing WM load may provide an efficient buffer against attentional capture by salient stimuli (i.e., methamphetamine-related words). This buffer might modify the effect of interference bias. Besides, presenting methamphetamine-related stimuli might facilitate the encoding phase due to bias toward task-relevant stimuli. This finding has an important implication, suggesting that performing concurrent demanding tasks may reduce the power of salient stimuli and thus improve the efficiency of emotional regulation strategies.