Cargando…
Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects
Debridement of the bone surface during a surgical fusion procedure initiates an injury response promoting a healing cascade of molecular mediators released over time. Autologous grafts offer natural scaffolding to fill the bone void and to provide local bone cells. Commercial bone grafting products...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817928/ https://www.ncbi.nlm.nih.gov/pubmed/31737666 http://dx.doi.org/10.1155/2019/5025398 |
_version_ | 1783463527064797184 |
---|---|
author | Martin, W. Blake Sicard, Renaud Namin, Shabnam M. Ganey, Timothy |
author_facet | Martin, W. Blake Sicard, Renaud Namin, Shabnam M. Ganey, Timothy |
author_sort | Martin, W. Blake |
collection | PubMed |
description | Debridement of the bone surface during a surgical fusion procedure initiates an injury response promoting a healing cascade of molecular mediators released over time. Autologous grafts offer natural scaffolding to fill the bone void and to provide local bone cells. Commercial bone grafting products such as allografts, synthetic bone mineral products, etc., are used to supplement or to replace autologous grafts by supporting osteoinductivity, osteoconductivity, and osteogenesis at the surgical site. To assure osteogenic potential, preservation of allogeneic cells with cryoprotectants has been developed to allow for long-term storage and thus delivery of viable bone cells to the surgical site. Dimethyl sulfoxide (DMSO) is an intracellular cryoprotectant commonly used because it provides good viability of the cells post-thaw. However, there is known cytotoxicity reported for DMSO when cells are stored above cryogenic temperatures. For most cellular bone graft products, the cryoprotectant is incorporated with the cells into the other mineralized bone and demineralized bone components. During thawing, the DMSO may not be sufficiently removed from allograft products compared to its use in a cell suspension where removal by washing and centrifugation is available. Therefore, both the allogeneic cell types in the bone grafting product and the local cell types at the bone grafting site could be affected as cytotoxicity varies by cell type and by DMSO content according to reported studies. Overcoming cytotoxicity may be an additional challenge in the formation of bone at a wound or surgical site. Other extracellular cryoprotectants have been explored as alternatives to DMSO which preserve without entering the cell membrane, thereby providing good cellular viability post-thaw and might abrogate the cytotoxicity concerns. |
format | Online Article Text |
id | pubmed-6817928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-68179282019-11-17 Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects Martin, W. Blake Sicard, Renaud Namin, Shabnam M. Ganey, Timothy Biomed Res Int Review Article Debridement of the bone surface during a surgical fusion procedure initiates an injury response promoting a healing cascade of molecular mediators released over time. Autologous grafts offer natural scaffolding to fill the bone void and to provide local bone cells. Commercial bone grafting products such as allografts, synthetic bone mineral products, etc., are used to supplement or to replace autologous grafts by supporting osteoinductivity, osteoconductivity, and osteogenesis at the surgical site. To assure osteogenic potential, preservation of allogeneic cells with cryoprotectants has been developed to allow for long-term storage and thus delivery of viable bone cells to the surgical site. Dimethyl sulfoxide (DMSO) is an intracellular cryoprotectant commonly used because it provides good viability of the cells post-thaw. However, there is known cytotoxicity reported for DMSO when cells are stored above cryogenic temperatures. For most cellular bone graft products, the cryoprotectant is incorporated with the cells into the other mineralized bone and demineralized bone components. During thawing, the DMSO may not be sufficiently removed from allograft products compared to its use in a cell suspension where removal by washing and centrifugation is available. Therefore, both the allogeneic cell types in the bone grafting product and the local cell types at the bone grafting site could be affected as cytotoxicity varies by cell type and by DMSO content according to reported studies. Overcoming cytotoxicity may be an additional challenge in the formation of bone at a wound or surgical site. Other extracellular cryoprotectants have been explored as alternatives to DMSO which preserve without entering the cell membrane, thereby providing good cellular viability post-thaw and might abrogate the cytotoxicity concerns. Hindawi 2019-10-16 /pmc/articles/PMC6817928/ /pubmed/31737666 http://dx.doi.org/10.1155/2019/5025398 Text en Copyright © 2019 W. Blake Martin et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Martin, W. Blake Sicard, Renaud Namin, Shabnam M. Ganey, Timothy Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects |
title | Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects |
title_full | Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects |
title_fullStr | Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects |
title_full_unstemmed | Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects |
title_short | Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects |
title_sort | methods of cryoprotectant preservation: allogeneic cellular bone grafts and potential effects |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817928/ https://www.ncbi.nlm.nih.gov/pubmed/31737666 http://dx.doi.org/10.1155/2019/5025398 |
work_keys_str_mv | AT martinwblake methodsofcryoprotectantpreservationallogeneiccellularbonegraftsandpotentialeffects AT sicardrenaud methodsofcryoprotectantpreservationallogeneiccellularbonegraftsandpotentialeffects AT naminshabnamm methodsofcryoprotectantpreservationallogeneiccellularbonegraftsandpotentialeffects AT ganeytimothy methodsofcryoprotectantpreservationallogeneiccellularbonegraftsandpotentialeffects |