Cargando…
A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818242/ https://www.ncbi.nlm.nih.gov/pubmed/27988322 http://dx.doi.org/10.1016/j.neuroimage.2016.12.010 |
_version_ | 1783463583132155904 |
---|---|
author | Ladefoged, Claes N. Law, Ian Anazodo, Udunna St. Lawrence, Keith Izquierdo-Garcia, David Catana, Ciprian Burgos, Ninon Cardoso, M. Jorge Ourselin, Sebastien Hutton, Brian Mérida, Inés Costes, Nicolas Hammers, Alexander Benoit, Didier Holm, Søren Juttukonda, Meher An, Hongyu Cabello, Jorge Lukas, Mathias Nekolla, Stephan Ziegler, Sibylle Fenchel, Matthias Jakoby, Bjoern Casey, Michael E. Benzinger, Tammie Højgaard, Liselotte Hansen, Adam E. Andersen, Flemming L. |
author_facet | Ladefoged, Claes N. Law, Ian Anazodo, Udunna St. Lawrence, Keith Izquierdo-Garcia, David Catana, Ciprian Burgos, Ninon Cardoso, M. Jorge Ourselin, Sebastien Hutton, Brian Mérida, Inés Costes, Nicolas Hammers, Alexander Benoit, Didier Holm, Søren Juttukonda, Meher An, Hongyu Cabello, Jorge Lukas, Mathias Nekolla, Stephan Ziegler, Sibylle Fenchel, Matthias Jakoby, Bjoern Casey, Michael E. Benzinger, Tammie Højgaard, Liselotte Hansen, Adam E. Andersen, Flemming L. |
author_sort | Ladefoged, Claes N. |
collection | PubMed |
description | AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-AC(DIXON) and MR-AC(UTE)), five based on template/atlas information (MR-AC(SEGBONE) (Koesters et al., 2016), MR-AC(ONTARIO) (Anazodo et al., 2014), MR-AC(BOSTON) (Izquierdo-Garcia et al., 2014), MR-AC(UCL) (Burgos et al., 2014), and MR-AC(MAXPROB) (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-AC(MLAA) (Benoit et al., 2015)), and three based on image-segmentation (MR-AC(MUNICH) (Cabello et al., 2015), MR-AC(CAR-RiDR) (Juttukonda et al., 2015), and MR-AC(RESOLUTE) (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [(18)F]FDG (210), [(11)C]PiB (51), and [(18)F] florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ± 5% of CT for all of the proposed methods, with the average ± SD global percentage bias in PET FDG uptake for each method being: MR-AC(DIXON) (−11.3 ± 3.5)%, MR-AC(UTE) (−5.7 ± 2.0)%, MR-AC(ONTARIO) (−4.3 ± 3.6)%, MR-AC(MUNICH) (3.7 ± 2.1)%, MR-AC(MLAA) (−1.9 ± 2.6)%, MR-AC(SEGBONE) (−1.7 ± 3.6)%, MR-AC(UCL) (0.8 ± 1.2)%, MR-AC(CAR-RiDR) (−0.4 ± 1.9)%, MR-AC(MAXPROB) (−0.4 ± 1.6)%, MR-AC(BOSTON) (−0.3 ± 1.8)%, and MR-AC(RESOLUTE) (0.3 ± 1.7)%, ordered by average bias. The overall best performing methods (MR-AC(BOSTON), MR-AC(MAXPROB), MR-AC(RESOLUTE) and MR-AC(UCL), ordered alphabetically) showed regional average errors within ± 3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-AC(CAR-RiDR), showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits ( ± 5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging. |
format | Online Article Text |
id | pubmed-6818242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68182422019-10-29 A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients Ladefoged, Claes N. Law, Ian Anazodo, Udunna St. Lawrence, Keith Izquierdo-Garcia, David Catana, Ciprian Burgos, Ninon Cardoso, M. Jorge Ourselin, Sebastien Hutton, Brian Mérida, Inés Costes, Nicolas Hammers, Alexander Benoit, Didier Holm, Søren Juttukonda, Meher An, Hongyu Cabello, Jorge Lukas, Mathias Nekolla, Stephan Ziegler, Sibylle Fenchel, Matthias Jakoby, Bjoern Casey, Michael E. Benzinger, Tammie Højgaard, Liselotte Hansen, Adam E. Andersen, Flemming L. Neuroimage Article AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-AC(DIXON) and MR-AC(UTE)), five based on template/atlas information (MR-AC(SEGBONE) (Koesters et al., 2016), MR-AC(ONTARIO) (Anazodo et al., 2014), MR-AC(BOSTON) (Izquierdo-Garcia et al., 2014), MR-AC(UCL) (Burgos et al., 2014), and MR-AC(MAXPROB) (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-AC(MLAA) (Benoit et al., 2015)), and three based on image-segmentation (MR-AC(MUNICH) (Cabello et al., 2015), MR-AC(CAR-RiDR) (Juttukonda et al., 2015), and MR-AC(RESOLUTE) (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [(18)F]FDG (210), [(11)C]PiB (51), and [(18)F] florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ± 5% of CT for all of the proposed methods, with the average ± SD global percentage bias in PET FDG uptake for each method being: MR-AC(DIXON) (−11.3 ± 3.5)%, MR-AC(UTE) (−5.7 ± 2.0)%, MR-AC(ONTARIO) (−4.3 ± 3.6)%, MR-AC(MUNICH) (3.7 ± 2.1)%, MR-AC(MLAA) (−1.9 ± 2.6)%, MR-AC(SEGBONE) (−1.7 ± 3.6)%, MR-AC(UCL) (0.8 ± 1.2)%, MR-AC(CAR-RiDR) (−0.4 ± 1.9)%, MR-AC(MAXPROB) (−0.4 ± 1.6)%, MR-AC(BOSTON) (−0.3 ± 1.8)%, and MR-AC(RESOLUTE) (0.3 ± 1.7)%, ordered by average bias. The overall best performing methods (MR-AC(BOSTON), MR-AC(MAXPROB), MR-AC(RESOLUTE) and MR-AC(UCL), ordered alphabetically) showed regional average errors within ± 3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-AC(CAR-RiDR), showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits ( ± 5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging. 2016-12-14 2017-02-15 /pmc/articles/PMC6818242/ /pubmed/27988322 http://dx.doi.org/10.1016/j.neuroimage.2016.12.010 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Ladefoged, Claes N. Law, Ian Anazodo, Udunna St. Lawrence, Keith Izquierdo-Garcia, David Catana, Ciprian Burgos, Ninon Cardoso, M. Jorge Ourselin, Sebastien Hutton, Brian Mérida, Inés Costes, Nicolas Hammers, Alexander Benoit, Didier Holm, Søren Juttukonda, Meher An, Hongyu Cabello, Jorge Lukas, Mathias Nekolla, Stephan Ziegler, Sibylle Fenchel, Matthias Jakoby, Bjoern Casey, Michael E. Benzinger, Tammie Højgaard, Liselotte Hansen, Adam E. Andersen, Flemming L. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients |
title | A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients |
title_full | A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients |
title_fullStr | A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients |
title_full_unstemmed | A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients |
title_short | A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients |
title_sort | multi-centre evaluation of eleven clinically feasible brain pet/mri attenuation correction techniques using a large cohort of patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818242/ https://www.ncbi.nlm.nih.gov/pubmed/27988322 http://dx.doi.org/10.1016/j.neuroimage.2016.12.010 |
work_keys_str_mv | AT ladefogedclaesn amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT lawian amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT anazodoudunna amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT stlawrencekeith amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT izquierdogarciadavid amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT catanaciprian amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT burgosninon amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT cardosomjorge amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT ourselinsebastien amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT huttonbrian amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT meridaines amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT costesnicolas amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT hammersalexander amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT benoitdidier amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT holmsøren amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT juttukondameher amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT anhongyu amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT cabellojorge amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT lukasmathias amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT nekollastephan amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT zieglersibylle amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT fenchelmatthias amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT jakobybjoern amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT caseymichaele amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT benzingertammie amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT højgaardliselotte amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT hansenadame amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT andersenflemmingl amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT ladefogedclaesn multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT lawian multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT anazodoudunna multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT stlawrencekeith multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT izquierdogarciadavid multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT catanaciprian multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT burgosninon multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT cardosomjorge multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT ourselinsebastien multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT huttonbrian multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT meridaines multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT costesnicolas multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT hammersalexander multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT benoitdidier multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT holmsøren multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT juttukondameher multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT anhongyu multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT cabellojorge multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT lukasmathias multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT nekollastephan multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT zieglersibylle multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT fenchelmatthias multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT jakobybjoern multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT caseymichaele multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT benzingertammie multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT højgaardliselotte multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT hansenadame multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients AT andersenflemmingl multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients |