Cargando…

A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients

AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ladefoged, Claes N., Law, Ian, Anazodo, Udunna, St. Lawrence, Keith, Izquierdo-Garcia, David, Catana, Ciprian, Burgos, Ninon, Cardoso, M. Jorge, Ourselin, Sebastien, Hutton, Brian, Mérida, Inés, Costes, Nicolas, Hammers, Alexander, Benoit, Didier, Holm, Søren, Juttukonda, Meher, An, Hongyu, Cabello, Jorge, Lukas, Mathias, Nekolla, Stephan, Ziegler, Sibylle, Fenchel, Matthias, Jakoby, Bjoern, Casey, Michael E., Benzinger, Tammie, Højgaard, Liselotte, Hansen, Adam E., Andersen, Flemming L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818242/
https://www.ncbi.nlm.nih.gov/pubmed/27988322
http://dx.doi.org/10.1016/j.neuroimage.2016.12.010
_version_ 1783463583132155904
author Ladefoged, Claes N.
Law, Ian
Anazodo, Udunna
St. Lawrence, Keith
Izquierdo-Garcia, David
Catana, Ciprian
Burgos, Ninon
Cardoso, M. Jorge
Ourselin, Sebastien
Hutton, Brian
Mérida, Inés
Costes, Nicolas
Hammers, Alexander
Benoit, Didier
Holm, Søren
Juttukonda, Meher
An, Hongyu
Cabello, Jorge
Lukas, Mathias
Nekolla, Stephan
Ziegler, Sibylle
Fenchel, Matthias
Jakoby, Bjoern
Casey, Michael E.
Benzinger, Tammie
Højgaard, Liselotte
Hansen, Adam E.
Andersen, Flemming L.
author_facet Ladefoged, Claes N.
Law, Ian
Anazodo, Udunna
St. Lawrence, Keith
Izquierdo-Garcia, David
Catana, Ciprian
Burgos, Ninon
Cardoso, M. Jorge
Ourselin, Sebastien
Hutton, Brian
Mérida, Inés
Costes, Nicolas
Hammers, Alexander
Benoit, Didier
Holm, Søren
Juttukonda, Meher
An, Hongyu
Cabello, Jorge
Lukas, Mathias
Nekolla, Stephan
Ziegler, Sibylle
Fenchel, Matthias
Jakoby, Bjoern
Casey, Michael E.
Benzinger, Tammie
Højgaard, Liselotte
Hansen, Adam E.
Andersen, Flemming L.
author_sort Ladefoged, Claes N.
collection PubMed
description AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-AC(DIXON) and MR-AC(UTE)), five based on template/atlas information (MR-AC(SEGBONE) (Koesters et al., 2016), MR-AC(ONTARIO) (Anazodo et al., 2014), MR-AC(BOSTON) (Izquierdo-Garcia et al., 2014), MR-AC(UCL) (Burgos et al., 2014), and MR-AC(MAXPROB) (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-AC(MLAA) (Benoit et al., 2015)), and three based on image-segmentation (MR-AC(MUNICH) (Cabello et al., 2015), MR-AC(CAR-RiDR) (Juttukonda et al., 2015), and MR-AC(RESOLUTE) (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [(18)F]FDG (210), [(11)C]PiB (51), and [(18)F] florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ± 5% of CT for all of the proposed methods, with the average ± SD global percentage bias in PET FDG uptake for each method being: MR-AC(DIXON) (−11.3 ± 3.5)%, MR-AC(UTE) (−5.7 ± 2.0)%, MR-AC(ONTARIO) (−4.3 ± 3.6)%, MR-AC(MUNICH) (3.7 ± 2.1)%, MR-AC(MLAA) (−1.9 ± 2.6)%, MR-AC(SEGBONE) (−1.7 ± 3.6)%, MR-AC(UCL) (0.8 ± 1.2)%, MR-AC(CAR-RiDR) (−0.4 ± 1.9)%, MR-AC(MAXPROB) (−0.4 ± 1.6)%, MR-AC(BOSTON) (−0.3 ± 1.8)%, and MR-AC(RESOLUTE) (0.3 ± 1.7)%, ordered by average bias. The overall best performing methods (MR-AC(BOSTON), MR-AC(MAXPROB), MR-AC(RESOLUTE) and MR-AC(UCL), ordered alphabetically) showed regional average errors within ± 3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-AC(CAR-RiDR), showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits ( ± 5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging.
format Online
Article
Text
id pubmed-6818242
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-68182422019-10-29 A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients Ladefoged, Claes N. Law, Ian Anazodo, Udunna St. Lawrence, Keith Izquierdo-Garcia, David Catana, Ciprian Burgos, Ninon Cardoso, M. Jorge Ourselin, Sebastien Hutton, Brian Mérida, Inés Costes, Nicolas Hammers, Alexander Benoit, Didier Holm, Søren Juttukonda, Meher An, Hongyu Cabello, Jorge Lukas, Mathias Nekolla, Stephan Ziegler, Sibylle Fenchel, Matthias Jakoby, Bjoern Casey, Michael E. Benzinger, Tammie Højgaard, Liselotte Hansen, Adam E. Andersen, Flemming L. Neuroimage Article AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-AC(DIXON) and MR-AC(UTE)), five based on template/atlas information (MR-AC(SEGBONE) (Koesters et al., 2016), MR-AC(ONTARIO) (Anazodo et al., 2014), MR-AC(BOSTON) (Izquierdo-Garcia et al., 2014), MR-AC(UCL) (Burgos et al., 2014), and MR-AC(MAXPROB) (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-AC(MLAA) (Benoit et al., 2015)), and three based on image-segmentation (MR-AC(MUNICH) (Cabello et al., 2015), MR-AC(CAR-RiDR) (Juttukonda et al., 2015), and MR-AC(RESOLUTE) (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [(18)F]FDG (210), [(11)C]PiB (51), and [(18)F] florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ± 5% of CT for all of the proposed methods, with the average ± SD global percentage bias in PET FDG uptake for each method being: MR-AC(DIXON) (−11.3 ± 3.5)%, MR-AC(UTE) (−5.7 ± 2.0)%, MR-AC(ONTARIO) (−4.3 ± 3.6)%, MR-AC(MUNICH) (3.7 ± 2.1)%, MR-AC(MLAA) (−1.9 ± 2.6)%, MR-AC(SEGBONE) (−1.7 ± 3.6)%, MR-AC(UCL) (0.8 ± 1.2)%, MR-AC(CAR-RiDR) (−0.4 ± 1.9)%, MR-AC(MAXPROB) (−0.4 ± 1.6)%, MR-AC(BOSTON) (−0.3 ± 1.8)%, and MR-AC(RESOLUTE) (0.3 ± 1.7)%, ordered by average bias. The overall best performing methods (MR-AC(BOSTON), MR-AC(MAXPROB), MR-AC(RESOLUTE) and MR-AC(UCL), ordered alphabetically) showed regional average errors within ± 3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-AC(CAR-RiDR), showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits ( ± 5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging. 2016-12-14 2017-02-15 /pmc/articles/PMC6818242/ /pubmed/27988322 http://dx.doi.org/10.1016/j.neuroimage.2016.12.010 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Ladefoged, Claes N.
Law, Ian
Anazodo, Udunna
St. Lawrence, Keith
Izquierdo-Garcia, David
Catana, Ciprian
Burgos, Ninon
Cardoso, M. Jorge
Ourselin, Sebastien
Hutton, Brian
Mérida, Inés
Costes, Nicolas
Hammers, Alexander
Benoit, Didier
Holm, Søren
Juttukonda, Meher
An, Hongyu
Cabello, Jorge
Lukas, Mathias
Nekolla, Stephan
Ziegler, Sibylle
Fenchel, Matthias
Jakoby, Bjoern
Casey, Michael E.
Benzinger, Tammie
Højgaard, Liselotte
Hansen, Adam E.
Andersen, Flemming L.
A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
title A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
title_full A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
title_fullStr A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
title_full_unstemmed A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
title_short A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
title_sort multi-centre evaluation of eleven clinically feasible brain pet/mri attenuation correction techniques using a large cohort of patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818242/
https://www.ncbi.nlm.nih.gov/pubmed/27988322
http://dx.doi.org/10.1016/j.neuroimage.2016.12.010
work_keys_str_mv AT ladefogedclaesn amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT lawian amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT anazodoudunna amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT stlawrencekeith amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT izquierdogarciadavid amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT catanaciprian amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT burgosninon amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT cardosomjorge amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT ourselinsebastien amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT huttonbrian amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT meridaines amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT costesnicolas amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT hammersalexander amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT benoitdidier amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT holmsøren amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT juttukondameher amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT anhongyu amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT cabellojorge amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT lukasmathias amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT nekollastephan amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT zieglersibylle amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT fenchelmatthias amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT jakobybjoern amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT caseymichaele amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT benzingertammie amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT højgaardliselotte amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT hansenadame amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT andersenflemmingl amulticentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT ladefogedclaesn multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT lawian multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT anazodoudunna multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT stlawrencekeith multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT izquierdogarciadavid multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT catanaciprian multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT burgosninon multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT cardosomjorge multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT ourselinsebastien multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT huttonbrian multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT meridaines multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT costesnicolas multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT hammersalexander multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT benoitdidier multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT holmsøren multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT juttukondameher multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT anhongyu multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT cabellojorge multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT lukasmathias multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT nekollastephan multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT zieglersibylle multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT fenchelmatthias multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT jakobybjoern multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT caseymichaele multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT benzingertammie multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT højgaardliselotte multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT hansenadame multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients
AT andersenflemmingl multicentreevaluationofelevenclinicallyfeasiblebrainpetmriattenuationcorrectiontechniquesusingalargecohortofpatients