Cargando…
Analysis of functional variants in mitochondrial DNA of Finnish athletes
BACKGROUND: We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional var...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819560/ https://www.ncbi.nlm.nih.gov/pubmed/31664900 http://dx.doi.org/10.1186/s12864-019-6171-6 |
_version_ | 1783463760074113024 |
---|---|
author | Kiiskilä, Jukka Moilanen, Jukka S. Kytövuori, Laura Niemi, Anna-Kaisa Majamaa, Kari |
author_facet | Kiiskilä, Jukka Moilanen, Jukka S. Kytövuori, Laura Niemi, Anna-Kaisa Majamaa, Kari |
author_sort | Kiiskilä, Jukka |
collection | PubMed |
description | BACKGROUND: We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups. RESULTS: The distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1. CONCLUSIONS: We propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance. |
format | Online Article Text |
id | pubmed-6819560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68195602019-10-31 Analysis of functional variants in mitochondrial DNA of Finnish athletes Kiiskilä, Jukka Moilanen, Jukka S. Kytövuori, Laura Niemi, Anna-Kaisa Majamaa, Kari BMC Genomics Research Article BACKGROUND: We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups. RESULTS: The distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1. CONCLUSIONS: We propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance. BioMed Central 2019-10-29 /pmc/articles/PMC6819560/ /pubmed/31664900 http://dx.doi.org/10.1186/s12864-019-6171-6 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Kiiskilä, Jukka Moilanen, Jukka S. Kytövuori, Laura Niemi, Anna-Kaisa Majamaa, Kari Analysis of functional variants in mitochondrial DNA of Finnish athletes |
title | Analysis of functional variants in mitochondrial DNA of Finnish athletes |
title_full | Analysis of functional variants in mitochondrial DNA of Finnish athletes |
title_fullStr | Analysis of functional variants in mitochondrial DNA of Finnish athletes |
title_full_unstemmed | Analysis of functional variants in mitochondrial DNA of Finnish athletes |
title_short | Analysis of functional variants in mitochondrial DNA of Finnish athletes |
title_sort | analysis of functional variants in mitochondrial dna of finnish athletes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819560/ https://www.ncbi.nlm.nih.gov/pubmed/31664900 http://dx.doi.org/10.1186/s12864-019-6171-6 |
work_keys_str_mv | AT kiiskilajukka analysisoffunctionalvariantsinmitochondrialdnaoffinnishathletes AT moilanenjukkas analysisoffunctionalvariantsinmitochondrialdnaoffinnishathletes AT kytovuorilaura analysisoffunctionalvariantsinmitochondrialdnaoffinnishathletes AT niemiannakaisa analysisoffunctionalvariantsinmitochondrialdnaoffinnishathletes AT majamaakari analysisoffunctionalvariantsinmitochondrialdnaoffinnishathletes |