Cargando…
A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
BACKGROUND: Cancer subtype classification attains the great importance for accurate diagnosis and personalized treatment of cancer. Latest developments in high-throughput sequencing technologies have rapidly produced multi-omics data of the same cancer sample. Many computational methods have been pr...
Autores principales: | Xu, Jing, Wu, Peng, Chen, Yuehui, Meng, Qingfang, Dawood, Hussain, Dawood, Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819613/ https://www.ncbi.nlm.nih.gov/pubmed/31660856 http://dx.doi.org/10.1186/s12859-019-3116-7 |
Ejemplares similares
-
A laminar augmented cascading flexible neural forest model for classification of cancer subtypes based on gene expression data
por: Zhong, Lianxin, et al.
Publicado: (2021) -
A Cascade Flexible Neural Forest Model for Cancer Subtypes Classification on Gene Expression Data
por: Zhong, Lianxin, et al.
Publicado: (2021) -
Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes
por: Kim, SungHwan, et al.
Publicado: (2015) -
A flexible framework for sparse simultaneous component based data integration
por: Van Deun, Katrijn, et al.
Publicado: (2011) -
A unified framework for the integration of multiple hierarchical clusterings or networks from multi-source data
por: Hulot, Audrey, et al.
Publicado: (2021)