Cargando…

Deep morphological analysis of muscle biopsies from type III glycogenesis (GSDIII), debranching enzyme deficiency, revealed stereotyped vacuolar myopathy and autophagy impairment

Glycogen storage disorder type III (GSDIII), or debranching enzyme (GDE) deficiency, is a rare metabolic disorder characterized by variable liver, cardiac, and skeletal muscle involvement. GSDIII manifests with liver symptoms in infancy and muscle involvement during early adulthood. Muscle biopsy is...

Descripción completa

Detalles Bibliográficos
Autores principales: Laforêt, Pascal, Inoue, Michio, Goillot, Evelyne, Lefeuvre, Claire, Cagin, Umut, Streichenberger, Nathalie, Leonard-Louis, Sarah, Brochier, Guy, Madelaine, Angeline, Labasse, Clemence, Hedberg-Oldfors, Carola, Krag, Thomas, Jauze, Louisa, Fabregue, Julien, Labrune, Philippe, Milisenda, Jose, Nadaj-Pakleza, Aleksandra, Sacconi, Sabrina, Mingozzi, Federico, Ronzitti, Giuseppe, Petit, François, Schoser, Benedikt, Oldfors, Anders, Vissing, John, Romero, Norma B., Nishino, Ichizo, Malfatti, Edoardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819650/
https://www.ncbi.nlm.nih.gov/pubmed/31661040
http://dx.doi.org/10.1186/s40478-019-0815-2
Descripción
Sumario:Glycogen storage disorder type III (GSDIII), or debranching enzyme (GDE) deficiency, is a rare metabolic disorder characterized by variable liver, cardiac, and skeletal muscle involvement. GSDIII manifests with liver symptoms in infancy and muscle involvement during early adulthood. Muscle biopsy is mainly performed in patients diagnosed in adulthood, as routine diagnosis relies on blood or liver GDE analysis, followed by AGL gene sequencing. The GSDIII mouse model recapitulate the clinical phenotype in humans, and a nearly full rescue of muscle function was observed in mice treated with the dual AAV vector expressing the GDE transgene. In order to characterize GSDIII muscle morphological spectrum and identify novel disease markers and pathways, we performed a large international multicentric morphological study on 30 muscle biopsies from GSDIII patients. Autophagy flux studies were performed in human muscle biopsies and muscles from GSDIII mice. The human muscle biopsies revealed a typical and constant vacuolar myopathy, characterized by multiple and variably sized vacuoles filled with PAS-positive material. Using electron microscopy, we confirmed the presence of large non-membrane bound sarcoplasmic deposits of normally structured glycogen as well as smaller rounded sac structures lined by a continuous double membrane containing only glycogen, corresponding to autophagosomes. A consistent SQSTM1/p62 decrease and beclin-1 increase in human muscle biopsies suggested an enhanced autophagy. Consistent with this, an increase in the lipidated form of LC3, LC3II was found in patients compared to controls. A decrease in SQSTM1/p62 was also found in the GSDIII mouse model. In conclusion, we characterized the morphological phenotype in GSDIII muscle and demonstrated dysfunctional autophagy in GSDIII human samples. These findings suggest that autophagic modulation combined with gene therapy might be considered as a novel treatment for GSDIII.