Cargando…

Data set for characterization of the glycosylation status of hepatic glycoproteins in mice fed a low-carbohydrate ketogenic diet

The data presented herein pertain to a research article entitled “A low-carbohydrate ketogenic diet promotes ganglioside synthesis via the transcriptional regulation of ganglioside metabolism-related genes” [1]. The present article provides additional structural analysis data for the characterizatio...

Descripción completa

Detalles Bibliográficos
Autor principal: Okuda, Tetsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820080/
https://www.ncbi.nlm.nih.gov/pubmed/31687435
http://dx.doi.org/10.1016/j.dib.2019.104604
Descripción
Sumario:The data presented herein pertain to a research article entitled “A low-carbohydrate ketogenic diet promotes ganglioside synthesis via the transcriptional regulation of ganglioside metabolism-related genes” [1]. The present article provides additional structural analysis data for the characterization of hepatic glycoproteins in mice fed a low-carbohydrate ketogenic diet (LCKD). Analysis of hepatic glycoproteins by enzyme-linked assay using the lectins UEA-I, ConA, LCA, and WGA showed that the LCKD decreased mature forms of complex-type glycans but increased immature forms of glycans on glycoproteins. An enzyme-linked immunosorbent assay using an anti–α2,6-sialyl LacNAc antibody also supported this result, indicating that dietary carbohydrate restriction results in aberrant glycosylation of tissue glycoproteins. These structural alterations of hepatic glycoproteins were not correlated with the expression levels of glycosyltransferase genes but were correlated with down-regulated expression of the Gale gene, which encodes a rate-limiting enzyme for the synthesis of sugar nucleotide donors for protein glycosylation in the liver. This property differed from glycosphingolipid metabolism in the liver of LCKD-fed mice.