Cargando…

Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization

The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensit...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Ju, Cai, Xuezhu, Xiao, Qian, Chen, Zhengxi, Kulkarni, Praveen, Ferris, Craig, Kamarthi, Sagar, Sridhar, Srinivas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820303/
https://www.ncbi.nlm.nih.gov/pubmed/31687441
http://dx.doi.org/10.1016/j.dib.2019.104628
Descripción
Sumario:The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensitivity, specificity, false positive rate, misclassification rate) were estimated for the algorithms and there was no significant difference between K-means and GMM-EM. In addition, lesion size does not affect the accuracy and sensitivity for either method.