Cargando…
Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization
The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820303/ https://www.ncbi.nlm.nih.gov/pubmed/31687441 http://dx.doi.org/10.1016/j.dib.2019.104628 |
_version_ | 1783463910076055552 |
---|---|
author | Qiao, Ju Cai, Xuezhu Xiao, Qian Chen, Zhengxi Kulkarni, Praveen Ferris, Craig Kamarthi, Sagar Sridhar, Srinivas |
author_facet | Qiao, Ju Cai, Xuezhu Xiao, Qian Chen, Zhengxi Kulkarni, Praveen Ferris, Craig Kamarthi, Sagar Sridhar, Srinivas |
author_sort | Qiao, Ju |
collection | PubMed |
description | The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensitivity, specificity, false positive rate, misclassification rate) were estimated for the algorithms and there was no significant difference between K-means and GMM-EM. In addition, lesion size does not affect the accuracy and sensitivity for either method. |
format | Online Article Text |
id | pubmed-6820303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68203032019-11-04 Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization Qiao, Ju Cai, Xuezhu Xiao, Qian Chen, Zhengxi Kulkarni, Praveen Ferris, Craig Kamarthi, Sagar Sridhar, Srinivas Data Brief Medicine and Dentistry The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensitivity, specificity, false positive rate, misclassification rate) were estimated for the algorithms and there was no significant difference between K-means and GMM-EM. In addition, lesion size does not affect the accuracy and sensitivity for either method. Elsevier 2019-10-10 /pmc/articles/PMC6820303/ /pubmed/31687441 http://dx.doi.org/10.1016/j.dib.2019.104628 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Medicine and Dentistry Qiao, Ju Cai, Xuezhu Xiao, Qian Chen, Zhengxi Kulkarni, Praveen Ferris, Craig Kamarthi, Sagar Sridhar, Srinivas Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization |
title | Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization |
title_full | Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization |
title_fullStr | Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization |
title_full_unstemmed | Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization |
title_short | Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization |
title_sort | data on mri brain lesion segmentation using k-means and gaussian mixture model-expectation maximization |
topic | Medicine and Dentistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820303/ https://www.ncbi.nlm.nih.gov/pubmed/31687441 http://dx.doi.org/10.1016/j.dib.2019.104628 |
work_keys_str_mv | AT qiaoju dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT caixuezhu dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT xiaoqian dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT chenzhengxi dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT kulkarnipraveen dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT ferriscraig dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT kamarthisagar dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization AT sridharsrinivas dataonmribrainlesionsegmentationusingkmeansandgaussianmixturemodelexpectationmaximization |