Cargando…
Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization
The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensit...
Autores principales: | Qiao, Ju, Cai, Xuezhu, Xiao, Qian, Chen, Zhengxi, Kulkarni, Praveen, Ferris, Craig, Kamarthi, Sagar, Sridhar, Srinivas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820303/ https://www.ncbi.nlm.nih.gov/pubmed/31687441 http://dx.doi.org/10.1016/j.dib.2019.104628 |
Ejemplares similares
-
A Batch Rival Penalized Expectation-Maximization Algorithm for Gaussian Mixture Clustering with Automatic Model Selection
por: Wen, Jiechang, et al.
Publicado: (2012) -
Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
por: Yousefi, Siamak, et al.
Publicado: (2016) -
The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy
por: Wu, Weisan
Publicado: (2021) -
Correlation of Condylar Translation During Maximal Mouth Opening with Presence of Signs of Temporomandibular Joint Disorders in an Asymptomatic Population of 18-25 Years Age Group of Northern India
por: Gupta, Deepak, et al.
Publicado: (2018) -
Anterior Mandibular Segmental Distraction Osteogenesis: A Case Report
por: Starch-Jensen, Thomas, et al.
Publicado: (2018)