Cargando…
A continuous-time hidden Markov model for cancer surveillance using serum biomarkers with application to hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer deaths worldwide, and its early detection is a critical determinant of whether curative treatment is achievable. Early stage HCC is typically asymptomatic. Thus, screening programmes are used for cancer detection in patients at...
Autores principales: | Amoros, Ruben, King, Ruth, Toyoda, Hidenori, Kumada, Takashi, Johnson, Philip J., Bird, Thomas G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820468/ https://www.ncbi.nlm.nih.gov/pubmed/31708595 http://dx.doi.org/10.1007/s40300-019-00151-8 |
Ejemplares similares
-
Evaluation of the aMAP score for hepatocellular carcinoma surveillance: a realistic opportunity to risk stratify
por: Johnson, Philip J., et al.
Publicado: (2022) -
Disease surveillance using a hidden Markov model
por: Watkins, Rochelle E, et al.
Publicado: (2009) -
Tuberculosis Surveillance Using a Hidden Markov Model
por: Rafei, A, et al.
Publicado: (2012) -
Impact of disease stage and aetiology on survival in hepatocellular carcinoma: implications for surveillance
por: Johnson, Philip, et al.
Publicado: (2017) -
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017)