Cargando…

Validation and reproducibility of a new iodine specific food frequency questionnaire for assessing iodine intake in Norwegian pregnant women

BACKGROUND: Iodized salt is not mandatory in Norway, and the permitted level of iodine in table salt is low (5 μg/g). Thus, milk and dairy products, fish and eggs are the main dietary sources of iodine in Norway. Mild-to-moderate iodine deficiency in pregnant women has been described in several Euro...

Descripción completa

Detalles Bibliográficos
Autores principales: Næss, Synnøve, Aakre, Inger, Kjellevold, Marian, Dahl, Lisbeth, Nerhus, Ive, Midtbø, Lisa Kolden, Markhus, Maria Wik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821006/
https://www.ncbi.nlm.nih.gov/pubmed/31665021
http://dx.doi.org/10.1186/s12937-019-0489-4
Descripción
Sumario:BACKGROUND: Iodized salt is not mandatory in Norway, and the permitted level of iodine in table salt is low (5 μg/g). Thus, milk and dairy products, fish and eggs are the main dietary sources of iodine in Norway. Mild-to-moderate iodine deficiency in pregnant women has been described in several European countries, including Norway. There are few validated tools available to assess iodine intake in an efficient manner. The aim of the current study was to assess the validity and reproducibility of a new iodine-specific food frequency questionnaire (I-FFQ) in Norwegian pregnant women. METHODS: An I-FFQ consisting of a total of 60 food items and the use of supplements was developed to assess iodine intake and was administrated to 137 pregnant women at gestational week 18–19. Reference methods were a structured 6-days iodine specific food diary, urinary iodine concentration (UIC) (pooled sample of spot UIC from six consecutive days), and thyroid function tests. Correlation analyses, Cohen’s weighted kappa, Bland-Altman plots, and linear regression analyses were used to assess validity. Reproducibility of the I-FFQ was assessed in a subgroup (n = 47) at gestational week 35–36. RESULTS: There was a strong correlation between estimated iodine intake from the I-FFQ and food diary (r = 0.62, P < 0.001) and an acceptable correlation between the I-FFQ and UIC (r = 0.21, P = 0.018). There was no significant association between the I-FFQ and thyroid function tests. The I-FFQ estimated higher iodine intake compared to the food diary with a mean absolute difference 33 μg/day. The limits of agreement from the Bland-Altman plots were large, however few participants fell outside the limits of agreement (5.2–6.5%). There was no difference between the estimated iodine intake from the I-FFQ assessed at gestational week 18–19, and gestational week 35–36 (P = 0.866), and there was a strong correlation between the two time points (r = 0.63, P < 0.001). CONCLUSION: In summary, this study suggests that the I-FFQ can be used as a valid tool to estimate and rank iodine intake among Norwegian pregnant women. We further suggest that this I-FFQ may also be valid in other populations with similarly dietary patterns and where salt is not iodized. TRIAL REGISTRATION: The study is registered in ClinicalTrials.gov (NCT02610959).