Cargando…

The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan

BACKGROUND: Robust household sampling, commonly applied for population-based investigations, requires sampling frames or household lists to minimize selection bias. We have applied Google Earth Pro satellite imagery to constitute structure-based sampling frames at sites in Pikine, Senegal; Pietermar...

Descripción completa

Detalles Bibliográficos
Autores principales: Baker, Stephen, Ali, Mohammad, Deerin, Jessica Fung, Eltayeb, Muna Ahmed, Cruz Espinoza, Ligia Maria, Gasmelseed, Nagla, Im, Justin, Panzner, Ursula, Kalckreuth, Vera V, Keddy, Karen H, Pak, Gi Deok, Park, Jin Kyung, Park, Se Eun, Sooka, Arvinda, Sow, Amy Gassama, Tall, Adama, Luby, Stephen, Meyer, Christian G, Marks, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821174/
https://www.ncbi.nlm.nih.gov/pubmed/31665783
http://dx.doi.org/10.1093/cid/ciz755
_version_ 1783464099497115648
author Baker, Stephen
Ali, Mohammad
Deerin, Jessica Fung
Eltayeb, Muna Ahmed
Cruz Espinoza, Ligia Maria
Gasmelseed, Nagla
Im, Justin
Panzner, Ursula
Kalckreuth, Vera V
Keddy, Karen H
Pak, Gi Deok
Park, Jin Kyung
Park, Se Eun
Sooka, Arvinda
Sow, Amy Gassama
Tall, Adama
Luby, Stephen
Meyer, Christian G
Marks, Florian
author_facet Baker, Stephen
Ali, Mohammad
Deerin, Jessica Fung
Eltayeb, Muna Ahmed
Cruz Espinoza, Ligia Maria
Gasmelseed, Nagla
Im, Justin
Panzner, Ursula
Kalckreuth, Vera V
Keddy, Karen H
Pak, Gi Deok
Park, Jin Kyung
Park, Se Eun
Sooka, Arvinda
Sow, Amy Gassama
Tall, Adama
Luby, Stephen
Meyer, Christian G
Marks, Florian
author_sort Baker, Stephen
collection PubMed
description BACKGROUND: Robust household sampling, commonly applied for population-based investigations, requires sampling frames or household lists to minimize selection bias. We have applied Google Earth Pro satellite imagery to constitute structure-based sampling frames at sites in Pikine, Senegal; Pietermaritzburg, South Africa; and Wad-Medani, Sudan. Here we present our experiences in using this approach and findings from assessing its applicability by determining positional accuracy. METHODS: Printouts of satellite imagery combined with Global Positioning System receivers were used to locate and to verify the locations of sample structures (simple random selection; weighted-stratified sampling). Positional accuracy was assessed by study site and administrative subareas by calculating normalized distances (meters) between coordinates taken from the sampling frame and on the ground using receivers. A higher accuracy in conjunction with smaller distances was assumed. Kruskal-Wallis and Dunn multiple pairwise comparisons were performed to evaluate positional accuracy by setting and by individual surveyor in Pietermaritzburg. RESULTS: The median normalized distances and interquartile ranges were 0.05 and 0.03–0.08 in Pikine, 0.09 and 0.05–0.19 in Pietermaritzburg, and 0.05 and 0.00–0.10 in Wad-Medani, respectively. Root mean square errors were 0.08 in Pikine, 0.42 in Pietermaritzburg, and 0.17 in Wad-Medani. Kruskal-Wallis and Dunn comparisons indicated significant differences by low- and high-density setting and interviewers who performed the presented approach with high accuracy compared to interviewers with poor accuracy. CONCLUSIONS: The geospatial approach presented minimizes systematic errors and increases robustness and representativeness of a sample. However, the findings imply that this approach may not be applicable at all sites and settings; its success also depends on skills of surveyors working with aerial data. Methodological modifications are required, especially for resource-challenged sites that may be affected by constraints in data availability and area size.
format Online
Article
Text
id pubmed-6821174
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-68211742019-11-04 The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan Baker, Stephen Ali, Mohammad Deerin, Jessica Fung Eltayeb, Muna Ahmed Cruz Espinoza, Ligia Maria Gasmelseed, Nagla Im, Justin Panzner, Ursula Kalckreuth, Vera V Keddy, Karen H Pak, Gi Deok Park, Jin Kyung Park, Se Eun Sooka, Arvinda Sow, Amy Gassama Tall, Adama Luby, Stephen Meyer, Christian G Marks, Florian Clin Infect Dis Supplement Articles BACKGROUND: Robust household sampling, commonly applied for population-based investigations, requires sampling frames or household lists to minimize selection bias. We have applied Google Earth Pro satellite imagery to constitute structure-based sampling frames at sites in Pikine, Senegal; Pietermaritzburg, South Africa; and Wad-Medani, Sudan. Here we present our experiences in using this approach and findings from assessing its applicability by determining positional accuracy. METHODS: Printouts of satellite imagery combined with Global Positioning System receivers were used to locate and to verify the locations of sample structures (simple random selection; weighted-stratified sampling). Positional accuracy was assessed by study site and administrative subareas by calculating normalized distances (meters) between coordinates taken from the sampling frame and on the ground using receivers. A higher accuracy in conjunction with smaller distances was assumed. Kruskal-Wallis and Dunn multiple pairwise comparisons were performed to evaluate positional accuracy by setting and by individual surveyor in Pietermaritzburg. RESULTS: The median normalized distances and interquartile ranges were 0.05 and 0.03–0.08 in Pikine, 0.09 and 0.05–0.19 in Pietermaritzburg, and 0.05 and 0.00–0.10 in Wad-Medani, respectively. Root mean square errors were 0.08 in Pikine, 0.42 in Pietermaritzburg, and 0.17 in Wad-Medani. Kruskal-Wallis and Dunn comparisons indicated significant differences by low- and high-density setting and interviewers who performed the presented approach with high accuracy compared to interviewers with poor accuracy. CONCLUSIONS: The geospatial approach presented minimizes systematic errors and increases robustness and representativeness of a sample. However, the findings imply that this approach may not be applicable at all sites and settings; its success also depends on skills of surveyors working with aerial data. Methodological modifications are required, especially for resource-challenged sites that may be affected by constraints in data availability and area size. Oxford University Press 2019-11-15 2019-10-30 /pmc/articles/PMC6821174/ /pubmed/31665783 http://dx.doi.org/10.1093/cid/ciz755 Text en © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Supplement Articles
Baker, Stephen
Ali, Mohammad
Deerin, Jessica Fung
Eltayeb, Muna Ahmed
Cruz Espinoza, Ligia Maria
Gasmelseed, Nagla
Im, Justin
Panzner, Ursula
Kalckreuth, Vera V
Keddy, Karen H
Pak, Gi Deok
Park, Jin Kyung
Park, Se Eun
Sooka, Arvinda
Sow, Amy Gassama
Tall, Adama
Luby, Stephen
Meyer, Christian G
Marks, Florian
The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan
title The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan
title_full The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan
title_fullStr The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan
title_full_unstemmed The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan
title_short The Typhoid Fever Surveillance in Africa Program: Geospatial Sampling Frames for Household-based Studies: Lessons Learned From a Multicountry Surveillance Network in Senegal, South Africa, and Sudan
title_sort typhoid fever surveillance in africa program: geospatial sampling frames for household-based studies: lessons learned from a multicountry surveillance network in senegal, south africa, and sudan
topic Supplement Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821174/
https://www.ncbi.nlm.nih.gov/pubmed/31665783
http://dx.doi.org/10.1093/cid/ciz755
work_keys_str_mv AT bakerstephen thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT alimohammad thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT deerinjessicafung thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT eltayebmunaahmed thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT cruzespinozaligiamaria thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT gasmelseednagla thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT imjustin thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT panznerursula thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT kalckreuthverav thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT keddykarenh thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT pakgideok thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT parkjinkyung thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT parkseeun thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT sookaarvinda thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT sowamygassama thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT talladama thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT lubystephen thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT meyerchristiang thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT marksflorian thetyphoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT bakerstephen typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT alimohammad typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT deerinjessicafung typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT eltayebmunaahmed typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT cruzespinozaligiamaria typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT gasmelseednagla typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT imjustin typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT panznerursula typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT kalckreuthverav typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT keddykarenh typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT pakgideok typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT parkjinkyung typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT parkseeun typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT sookaarvinda typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT sowamygassama typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT talladama typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT lubystephen typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT meyerchristiang typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan
AT marksflorian typhoidfeversurveillanceinafricaprogramgeospatialsamplingframesforhouseholdbasedstudieslessonslearnedfromamulticountrysurveillancenetworkinsenegalsouthafricaandsudan