Cargando…
clustermq enables efficient parallelization of genomic analyses
MOTIVATION: High performance computing (HPC) clusters play a pivotal role in large-scale bioinformatics analysis and modeling. For the statistical computing language R, packages exist to enable a user to submit their analyses as jobs on HPC schedulers. However, these packages do not scale well to hi...
Autor principal: | Schubert, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821287/ https://www.ncbi.nlm.nih.gov/pubmed/31134271 http://dx.doi.org/10.1093/bioinformatics/btz284 |
Ejemplares similares
-
rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study
por: Yin, Lilin, et al.
Publicado: (2021) -
RUbioSeq: a suite of parallelized pipelines to automate exome variation and bisulfite-seq analyses
por: Rubio-Camarillo, Miriam, et al.
Publicado: (2013) -
BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations
por: Ghaffarizadeh, Ahmadreza, et al.
Publicado: (2016) -
PecanPy: a fast, efficient and parallelized Python implementation of node2vec
por: Liu, Renming, et al.
Publicado: (2021) -
Exploiting parallelization in positional Burrows–Wheeler transform (PBWT) algorithms for efficient haplotype matching and compression
por: Wertenbroek, Rick, et al.
Publicado: (2023)