Cargando…
HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data
MOTIVATION: High-resolution Hi-C data are indispensable for the studies of three-dimensional (3D) genome organization at kilobase level. However, generating high-resolution Hi-C data (e.g. 5 kb) by conducting Hi-C experiments needs millions of mammalian cells, which may eventually generate billions...
Autores principales: | Liu, Tong, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821373/ https://www.ncbi.nlm.nih.gov/pubmed/31056636 http://dx.doi.org/10.1093/bioinformatics/btz251 |
Ejemplares similares
-
HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks
por: Liu, Tong, et al.
Publicado: (2019) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Zhang, Yan, et al.
Publicado: (2018) -
DeepHiC: A generative adversarial network for enhancing Hi-C data resolution
por: Hong, Hao, et al.
Publicado: (2020) -
HiCARN: resolution enhancement of Hi-C data using cascading residual networks
por: Hicks, Parker, et al.
Publicado: (2022) -
DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data
por: Wang, Bin, et al.
Publicado: (2023)