Cargando…
Assessing reproducibility of matrix factorization methods in independent transcriptomes
MOTIVATION: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never been compared based on the between-datasets reproducibility of their outputs in similar independent dat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821374/ https://www.ncbi.nlm.nih.gov/pubmed/30938767 http://dx.doi.org/10.1093/bioinformatics/btz225 |
_version_ | 1783464130862120960 |
---|---|
author | Cantini, Laura Kairov, Ulykbek de Reyniès, Aurélien Barillot, Emmanuel Radvanyi, François Zinovyev, Andrei |
author_facet | Cantini, Laura Kairov, Ulykbek de Reyniès, Aurélien Barillot, Emmanuel Radvanyi, François Zinovyev, Andrei |
author_sort | Cantini, Laura |
collection | PubMed |
description | MOTIVATION: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never been compared based on the between-datasets reproducibility of their outputs in similar independent datasets. Lack of this knowledge might have a crucial impact when generalizing the predictions made in a study to others. RESULTS: We systematically test widely used MF methods on several transcriptomic datasets collected from the same cancer type (14 colorectal, 8 breast and 4 ovarian cancer transcriptomic datasets). Inspired by concepts of evolutionary bioinformatics, we design a novel framework based on Reciprocally Best Hit (RBH) graphs in order to benchmark the MF methods for their ability to produce generalizable components. We show that a particular protocol of application of independent component analysis (ICA), accompanied by a stabilization procedure, leads to a significant increase in the between-datasets reproducibility. Moreover, we show that the signals detected through this method are systematically more interpretable than those of other standard methods. We developed a user-friendly tool for performing the Stabilized ICA-based RBH meta-analysis. We apply this methodology to the study of colorectal cancer (CRC) for which 14 independent transcriptomic datasets can be collected. The resulting RBH graph maps the landscape of interconnected factors associated to biological processes or to technological artifacts. These factors can be used as clinical biomarkers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral microenvironment. Their intensities in different samples shed light on the mechanistic basis of CRC molecular subtyping. AVAILABILITY AND IMPLEMENTATION: The RBH construction tool is available from http://goo.gl/DzpwYp SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-6821374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68213742019-11-04 Assessing reproducibility of matrix factorization methods in independent transcriptomes Cantini, Laura Kairov, Ulykbek de Reyniès, Aurélien Barillot, Emmanuel Radvanyi, François Zinovyev, Andrei Bioinformatics Original Papers MOTIVATION: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never been compared based on the between-datasets reproducibility of their outputs in similar independent datasets. Lack of this knowledge might have a crucial impact when generalizing the predictions made in a study to others. RESULTS: We systematically test widely used MF methods on several transcriptomic datasets collected from the same cancer type (14 colorectal, 8 breast and 4 ovarian cancer transcriptomic datasets). Inspired by concepts of evolutionary bioinformatics, we design a novel framework based on Reciprocally Best Hit (RBH) graphs in order to benchmark the MF methods for their ability to produce generalizable components. We show that a particular protocol of application of independent component analysis (ICA), accompanied by a stabilization procedure, leads to a significant increase in the between-datasets reproducibility. Moreover, we show that the signals detected through this method are systematically more interpretable than those of other standard methods. We developed a user-friendly tool for performing the Stabilized ICA-based RBH meta-analysis. We apply this methodology to the study of colorectal cancer (CRC) for which 14 independent transcriptomic datasets can be collected. The resulting RBH graph maps the landscape of interconnected factors associated to biological processes or to technological artifacts. These factors can be used as clinical biomarkers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral microenvironment. Their intensities in different samples shed light on the mechanistic basis of CRC molecular subtyping. AVAILABILITY AND IMPLEMENTATION: The RBH construction tool is available from http://goo.gl/DzpwYp SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2019-11-01 2019-04-02 /pmc/articles/PMC6821374/ /pubmed/30938767 http://dx.doi.org/10.1093/bioinformatics/btz225 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Papers Cantini, Laura Kairov, Ulykbek de Reyniès, Aurélien Barillot, Emmanuel Radvanyi, François Zinovyev, Andrei Assessing reproducibility of matrix factorization methods in independent transcriptomes |
title | Assessing reproducibility of matrix factorization methods in independent transcriptomes |
title_full | Assessing reproducibility of matrix factorization methods in independent transcriptomes |
title_fullStr | Assessing reproducibility of matrix factorization methods in independent transcriptomes |
title_full_unstemmed | Assessing reproducibility of matrix factorization methods in independent transcriptomes |
title_short | Assessing reproducibility of matrix factorization methods in independent transcriptomes |
title_sort | assessing reproducibility of matrix factorization methods in independent transcriptomes |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821374/ https://www.ncbi.nlm.nih.gov/pubmed/30938767 http://dx.doi.org/10.1093/bioinformatics/btz225 |
work_keys_str_mv | AT cantinilaura assessingreproducibilityofmatrixfactorizationmethodsinindependenttranscriptomes AT kairovulykbek assessingreproducibilityofmatrixfactorizationmethodsinindependenttranscriptomes AT dereyniesaurelien assessingreproducibilityofmatrixfactorizationmethodsinindependenttranscriptomes AT barillotemmanuel assessingreproducibilityofmatrixfactorizationmethodsinindependenttranscriptomes AT radvanyifrancois assessingreproducibilityofmatrixfactorizationmethodsinindependenttranscriptomes AT zinovyevandrei assessingreproducibilityofmatrixfactorizationmethodsinindependenttranscriptomes |