Cargando…
Assessing reproducibility of matrix factorization methods in independent transcriptomes
MOTIVATION: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never been compared based on the between-datasets reproducibility of their outputs in similar independent dat...
Autores principales: | Cantini, Laura, Kairov, Ulykbek, de Reyniès, Aurélien, Barillot, Emmanuel, Radvanyi, François, Zinovyev, Andrei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821374/ https://www.ncbi.nlm.nih.gov/pubmed/30938767 http://dx.doi.org/10.1093/bioinformatics/btz225 |
Ejemplares similares
-
Determining the optimal number of independent components for reproducible transcriptomic data analysis
por: Kairov, Ulykbek, et al.
Publicado: (2017) -
Independent Component Analysis for Unraveling the Complexity of Cancer Omics Datasets
por: Sompairac, Nicolas, et al.
Publicado: (2019) -
Network analysis of gene lists for finding reproducible prognostic breast cancer gene signatures
por: Kairov, Ulykbek, et al.
Publicado: (2012) -
Meta-Analysis of Esophageal Cancer Transcriptomes Using Independent Component Analysis
por: Ashenova, Ainur, et al.
Publicado: (2021) -
A comprehensive modular map of molecular interactions in RB/E2F pathway
por: Calzone, Laurence, et al.
Publicado: (2008)