Cargando…
HLA*LA—HLA typing from linearly projected graph alignments
SUMMARY: HLA*LA implements a new graph alignment model for human leukocyte antigen (HLA) type inference, based on the projection of linear alignments onto a variation graph. It enables accurate HLA type inference from whole-genome (99% accuracy) and whole-exome (93% accuracy) Illumina data; from lon...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821427/ https://www.ncbi.nlm.nih.gov/pubmed/30942877 http://dx.doi.org/10.1093/bioinformatics/btz235 |
Sumario: | SUMMARY: HLA*LA implements a new graph alignment model for human leukocyte antigen (HLA) type inference, based on the projection of linear alignments onto a variation graph. It enables accurate HLA type inference from whole-genome (99% accuracy) and whole-exome (93% accuracy) Illumina data; from long-read Oxford Nanopore and Pacific Biosciences data (98% accuracy for whole-genome and targeted data) and from genome assemblies. Computational requirements for a typical sample vary between 0.7 and 14 CPU hours per sample. AVAILABILITY AND IMPLEMENTATION: HLA*LA is implemented in C++ and Perl and freely available as a bioconda package or from https://github.com/DiltheyLab/HLA-LA (GPL v3). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|