Cargando…

Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish

Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses. However, the nature of the underlying mechanisms remains poorly understood in ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Chengjie G., Metzen, Michael G., Chacron, Maurice J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821470/
https://www.ncbi.nlm.nih.gov/pubmed/31693006
http://dx.doi.org/10.1126/sciadv.aax2211
Descripción
Sumario:Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses. However, the nature of the underlying mechanisms remains poorly understood in general. Here, we investigated the mechanisms mediating adaptive optimized coding of naturalistic stimuli with varying statistics depending on the animal’s velocity during movement. We found that central neurons adapted their responses to stimuli with different power spectral densities such as to optimally encode them, thereby ensuring that behavioral responses are, in turn, better matched to the new stimulus statistics. Sensory adaptation further required descending inputs from the forebrain as well as the raphe nuclei. Our findings thus reveal a previously unknown functional role for descending pathways in mediating adaptive optimized coding of natural stimuli that is likely generally applicable across sensory systems and species.