Cargando…
Cerebral Microcirculatory Blood Flow Dynamics During Rest and a Continuous Motor Task
Objectives: To examine the brain’s microcirculatory response over the course of a continuous 5-min elbow movement task in order to estimate its potential role in grading vaso-neural coupling compared to the macrocirculatory response. Methods: We simultaneously recorded cerebral blood flow velocity (...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821676/ https://www.ncbi.nlm.nih.gov/pubmed/31708802 http://dx.doi.org/10.3389/fphys.2019.01355 |
Sumario: | Objectives: To examine the brain’s microcirculatory response over the course of a continuous 5-min elbow movement task in order to estimate its potential role in grading vaso-neural coupling compared to the macrocirculatory response. Methods: We simultaneously recorded cerebral blood flow velocity (CBFV), changes in oxygenated/deoxygenated hemoglobin concentrations ([oxHb], [deoxHb]), blood pressure (BP), and end-tidal CO(2) over 5-min periods of rest and left elbow movements in 24 healthy persons (13 women and 11 men of mean age ± SD, 38 ± 11 years). A low frequency range (0.07–0.15 Hz) was used for analysis by transfer function estimates of phase and gain. Results: Elbow movement led to a small BP increase (mean BP at rest 83 mm Hg, at movement 87; p < 0.01) and a small ETCO(2) decrease (at rest 44.6 mm Hg, at movement 41.7 mm Hg; p < 0.01). Further, it increased BP-[oxHb] phase from 55° (both sides) to 74° (right; p < 0.05)/69° (left; p < 0.05), and BP-[deoxHb] phase from 264° (right)/270° (left) to 288° (right; p < 0.05)/297° (left; p = 0.09). The cerebral mean transit time at 0.1 Hz of 5.6 s of rest remained unchanged by movement. Elbow movement significantly decreased BP-CBFV gain on both sides, and BP-CBFV phase only on the right side (p = 0.05). Conclusion: Elbow movement leads to an increased time delay between BP and [oxHb]/[deoxHb] while leaving the cerebral mean transit time unchanged. Phase shifting is usually the more robust parameter when using a transfer function to estimate dynamic cerebral autoregulation; phase shifting at the microcirculatory level seems to be a better marker of VNC-induced changes than phase shifting between BP and CBFV. |
---|