Cargando…
A deep learning framework to predict binding preference of RNA constituents on protein surface
Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone consti...
Autores principales: | Lam, Jordy Homing, Li, Yu, Zhu, Lizhe, Umarov, Ramzan, Jiang, Hanlun, Héliou, Amélie, Sheong, Fu Kit, Liu, Tianyun, Long, Yongkang, Li, Yunfei, Fang, Liang, Altman, Russ B., Chen, Wei, Huang, Xuhui, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821705/ https://www.ncbi.nlm.nih.gov/pubmed/31666519 http://dx.doi.org/10.1038/s41467-019-12920-0 |
Ejemplares similares
-
Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement
por: Jiang, Hanlun, et al.
Publicado: (2015) -
DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment
por: Umarov, Ramzan, et al.
Publicado: (2021) -
Critical role of backbone coordination in the mRNA recognition by RNA induced silencing complex
por: Zhu, Lizhe, et al.
Publicado: (2021) -
Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
por: Umarov, Ramzan Kh., et al.
Publicado: (2017) -
Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding
por: Liu, Tianyun, et al.
Publicado: (2011)