Cargando…
Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation
It is a challenging task to seek a highly-efficient electrocatalyst for oxygen evolution reaction (OER) of water splitting. Non-noble Co-based nanomaterials are considered as earth-abundant and effective catalysts to lower overpotential and increase polarization current density of OER. In this work,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821758/ https://www.ncbi.nlm.nih.gov/pubmed/31666571 http://dx.doi.org/10.1038/s41598-019-51979-z |
Sumario: | It is a challenging task to seek a highly-efficient electrocatalyst for oxygen evolution reaction (OER) of water splitting. Non-noble Co-based nanomaterials are considered as earth-abundant and effective catalysts to lower overpotential and increase polarization current density of OER. In this work, we reported, for the first time, a “rapid solvent-evaporation” strategy for the synthesis of three-dimensional (3D) cobalt complex hierarchical architectures constructed by two-dimensional (2D) nanosheets. The 3D structured cobalt complexes have excellent performances in catalyzing OER with lower onset potential, overpotential, Tafel slope and better stability than commercial IrO(2). Superior electrochemical performances would be beneficial from the unique 3D structure. This extremely simple method for 3D Co complex with good OER activities makes the complex be promising commercial OER catalyst to replace earth-rare and expensive IrO(2). |
---|