Cargando…
Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network
A deep-neural-network (DNN) was successfully used to predict clinically-acceptable dose distributions from organ contours for intensity-modulated radiotherapy (IMRT). To provide the next step in the DNN-based plan automation, we propose a DNN that directly generates beam fluence maps from the organ...
Autores principales: | Lee, Hoyeon, Kim, Hojin, Kwak, Jungwon, Kim, Young Seok, Lee, Sang Wook, Cho, Seungryong, Cho, Byungchul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821767/ https://www.ncbi.nlm.nih.gov/pubmed/31666647 http://dx.doi.org/10.1038/s41598-019-52262-x |
Ejemplares similares
-
An additional tilted‐scan‐based CT metal‐artifact‐reduction method for radiation therapy planning
por: Kim, Changhwan, et al.
Publicado: (2018) -
Plan optimization with L0-norm and group sparsity constraints for a new rotational, intensity-modulated brachytherapy for cervical cancer
por: Kim, Hojin, et al.
Publicado: (2020) -
Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network
por: Kim, Hojin, et al.
Publicado: (2020) -
Automated Field-In-Field (FIF) Plan Framework Combining Scripting Application
Programming Interface and User-Executed Program for Breast Forward IMRT
por: Kim, Hojin, et al.
Publicado: (2018) -
Clinical implementation of a wide-field electron arc technique with a scatterer for widespread Kaposi’s sarcoma in the distal extremities
por: Kim, Sung-woo, et al.
Publicado: (2020)