Cargando…
Flexible Temperature Sensor Integrated with Soft Pneumatic Microactuators for Functional Microfingers
The integration of a flexible temperature sensor with a soft microactuator (a pneumatic balloon actuator) for a functional microfinger is presented herein. A sensor integrated with a microactuator can actively approach a target for contact detection when a distance exists from the target or when the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821868/ https://www.ncbi.nlm.nih.gov/pubmed/31666579 http://dx.doi.org/10.1038/s41598-019-52022-x |
Sumario: | The integration of a flexible temperature sensor with a soft microactuator (a pneumatic balloon actuator) for a functional microfinger is presented herein. A sensor integrated with a microactuator can actively approach a target for contact detection when a distance exists from the target or when the target moves. This paper presents a microfinger with temperature sensing functionality. Moreover, thermocouples, which detect temperature based on the Seebeck effect, are designed for use as flexible temperature sensors. Thermocouples are formed by a pair of dissimilar metals or alloys, such as copper and constantan. Thin-film metals or alloys are patterned and integrated in the microfinger. Two typical thermocouples (K-type and T-type) are designed in this study. A 2.0 mm × 2.0 mm sensing area is designed on the microfinger (3.0 mm × 12 mm × 400 μm). Characterization indicates that the output voltage of the sensor is proportional to temperature, as designed. It is important to guarantee the performance of the sensor against actuation effects. Therefore, in addition to the fundamental characterization of the temperature sensors, the effect of bending deformation on the characteristics of the temperature sensors is examined with a repeated bending test consisting of 1000 cycles. |
---|