Cargando…
Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China
The central–marginal hypothesis predicts that geographically peripheral populations should exhibit reduced genetic diversity and increased genetic differentiation than central populations due to smaller effective population size and stronger geographical isolation. We evaluated these predictions in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822043/ https://www.ncbi.nlm.nih.gov/pubmed/31695899 http://dx.doi.org/10.1002/ece3.5703 |
_version_ | 1783464257150517248 |
---|---|
author | Liu, Li Wang, Zhen Huang, Lijie Wang, Ting Su, Yingjuan |
author_facet | Liu, Li Wang, Zhen Huang, Lijie Wang, Ting Su, Yingjuan |
author_sort | Liu, Li |
collection | PubMed |
description | The central–marginal hypothesis predicts that geographically peripheral populations should exhibit reduced genetic diversity and increased genetic differentiation than central populations due to smaller effective population size and stronger geographical isolation. We evaluated these predictions in the endangered conifer Taxus wallichiana var. mairei. Eight plastid simple sequence repeats (cpSSRs) were used to investigate plastid genetic variation in 22 populations of Taxus wallichiana var. mairei, encompassing nearly its entire distribution range. Low levels of plastid genetic variation and differentiation were detected in the populations, and the findings were attributed to low mutation rates, small population sizes, habitat fragmentation and isolation, and effective pollen or seed dispersal. Hunan and Hubei were identified as major refugia based on the number of private haplotypes and species distribution modeling. Trends in plastid genetic diversity and genetic differentiation from central to peripheral populations supported the predictions of the central–marginal hypothesis. In scenarios wherein the future climate becomes warmer, we predict that some peripheral populations will disappear and southern and southeastern regions will become significantly less habitable. Factors that include the levels of precipitation during the driest month, annual precipitation level, and annual temperature range will be decisive in shaping the future distribution of these populations. This study provides a theoretical basis for the conservation of T. wallichiana var. mairei. |
format | Online Article Text |
id | pubmed-6822043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68220432019-11-06 Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China Liu, Li Wang, Zhen Huang, Lijie Wang, Ting Su, Yingjuan Ecol Evol Original Research The central–marginal hypothesis predicts that geographically peripheral populations should exhibit reduced genetic diversity and increased genetic differentiation than central populations due to smaller effective population size and stronger geographical isolation. We evaluated these predictions in the endangered conifer Taxus wallichiana var. mairei. Eight plastid simple sequence repeats (cpSSRs) were used to investigate plastid genetic variation in 22 populations of Taxus wallichiana var. mairei, encompassing nearly its entire distribution range. Low levels of plastid genetic variation and differentiation were detected in the populations, and the findings were attributed to low mutation rates, small population sizes, habitat fragmentation and isolation, and effective pollen or seed dispersal. Hunan and Hubei were identified as major refugia based on the number of private haplotypes and species distribution modeling. Trends in plastid genetic diversity and genetic differentiation from central to peripheral populations supported the predictions of the central–marginal hypothesis. In scenarios wherein the future climate becomes warmer, we predict that some peripheral populations will disappear and southern and southeastern regions will become significantly less habitable. Factors that include the levels of precipitation during the driest month, annual precipitation level, and annual temperature range will be decisive in shaping the future distribution of these populations. This study provides a theoretical basis for the conservation of T. wallichiana var. mairei. John Wiley and Sons Inc. 2019-09-27 /pmc/articles/PMC6822043/ /pubmed/31695899 http://dx.doi.org/10.1002/ece3.5703 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Liu, Li Wang, Zhen Huang, Lijie Wang, Ting Su, Yingjuan Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China |
title | Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China |
title_full | Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China |
title_fullStr | Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China |
title_full_unstemmed | Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China |
title_short | Chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China |
title_sort | chloroplast population genetics reveals low levels of genetic variation and conformation to the central–marginal hypothesis in taxus wallichiana var. mairei, an endangered conifer endemic to china |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822043/ https://www.ncbi.nlm.nih.gov/pubmed/31695899 http://dx.doi.org/10.1002/ece3.5703 |
work_keys_str_mv | AT liuli chloroplastpopulationgeneticsrevealslowlevelsofgeneticvariationandconformationtothecentralmarginalhypothesisintaxuswallichianavarmaireianendangeredconiferendemictochina AT wangzhen chloroplastpopulationgeneticsrevealslowlevelsofgeneticvariationandconformationtothecentralmarginalhypothesisintaxuswallichianavarmaireianendangeredconiferendemictochina AT huanglijie chloroplastpopulationgeneticsrevealslowlevelsofgeneticvariationandconformationtothecentralmarginalhypothesisintaxuswallichianavarmaireianendangeredconiferendemictochina AT wangting chloroplastpopulationgeneticsrevealslowlevelsofgeneticvariationandconformationtothecentralmarginalhypothesisintaxuswallichianavarmaireianendangeredconiferendemictochina AT suyingjuan chloroplastpopulationgeneticsrevealslowlevelsofgeneticvariationandconformationtothecentralmarginalhypothesisintaxuswallichianavarmaireianendangeredconiferendemictochina |